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ABSTRACT

Axially symmetric dynamic response solutions for infinite and finite length

cylinders subjected to pressure transients which arise in propulsion systems are

presented in Volume I. Pressure transient types considered in detail are of the

spike, step, ramp and sinusoidal forms. Solutions for simple-simple and fixed-fixed

boundary conditions are given and used as the basis for design charts which yield

maximum stresses. A discussion of advanced problems is included.

Volume II is a User's Manual for a General Purpose Digital Computer Program

capable of predicting the dynamic response of cylinders subjected to ramp and sinusoidal

pressure transients. The dynamic response for many traverses of a pressure transient

from one end of the cylinder to the other can be computed by the program for the case

where one end of the cylinder is closed (by a valve) and the other end attached to a

relatively large container.
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D =

, critical damping coefficient for n= 1

e _-

E =

F =
n

h = cylinder wall thickness

k = wave number

k = eigenvalue
n

K = k
n n

._ = length of cylinder
Oh

m -
g

M
0

P

SYMBOLS

Viscous damping coefficient

pE h

g R

E h 3

12 (1- v 2)

half wave length of sinusoidal pressure transient

Young's modulus

nondimensional function of time

M_
M

X

M = axial bending moment per unit of circumferential length
X

M = PRh

o -_12 (I- _/2)

phl/2 R1/2

4/12 (1-_ 2)

= hoop bending moment per unit axial length

= nondimensional axial bending moment per unit of circumferential length

n = subscript, indicates mode number

N = number of terms taken in series solution

N_ = hoop membrane force per unit length

N = axial membrane force per unit lengthx

p = maximum intensity of radial pressure load

P = ring line load per unit of circumferential length

q = normal force intensity

q = intensityof radial pressure load
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radial displacement component of cylinder

eigenfunction

Fourier deflection transform
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c -_- nondimensional damping parameter
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A =

O" x

o"e =

T =

2_ " 12 (1- "J 2) speed parameter
2Eg

Poisson's ratio

y (x-vt), dimensionless moving coordinate, infinite shell

weight density

phase velocity

x
--_-_ dimensionless axial coordinate, finite shell

stress in axial direction

stress in circumferential direction

t
-7-- , nondimensional time

o

c
1" = _ = nondimensional valve closure time
c t

o

w = natural frequency

e0 = damped natural frequency

_'_ = nondimensionai natural frequency

= nondimensional damped natural frequency

Additional symbols are defined in the text where they occur.
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I. INTRODUCTION

During the various phases of operation of the propulsion systems of space

vehicles, severe pressure transients are experienced by the component cylindrical

ducts. This report presents the results of a study of the dynamic response of

circular cylinders subjected to pressure transient forms commonly encountered in

propulsion systems with the prime objective of providing analytical procedures and

design charts capable of dealing with the stringent minimum weight requirements of

aerospace vehicles. In general, a method is developed for the solution of the basic

equation for circular cylinders subjected to axial symmetric pressures of any type.

However, the method was used in this study to obtain dynamic solutions to the more

common pressure transient types and the pertinent stresses required for minimum

weight design purposes summarized into design charts.

Results of a literature survey are reported in Appendix A. In general, the

survey revealed that although the basic equations for the problem at hand are well

defined, pertinent dynamic solutions and their application to predicting the correct

local stress fields in cylinders subjected to transient pressures were limited.

Transient pressures appear in the form of pressure or rarefraction waves

which propagate along ducts at approximately the speed of sound in the contained fluid.

These pressure waves have various forms which depend on the nature .of the dis-

turbance responsible for them and are discussed in Section ]I. All dynamic elastic

solutions obtained are based on the assumption that the form and velocity of propagation

of the pressure transients are known.

The basic equations used in the analysis are derived in Section HI. Two solutions

are then obtained for the infinite shell, one for the spike load and the other for the step

pressure form. In addition, a method for deriving the dynamic response with damping

of a finite length duct subjected to axial symmetric pressures is developed. For

illustrative purposes, several problems are solved in detail in this Section. The work

Report No. 2286-950002 1
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is limited to two boundary conditions, i.e. cylinders with both ends simply supported

and cylinders with both ends fixed. Although it is shown that the method can be

readily used to obtain solutions for all possible combinations of adrnissable

boundary conditionsjthe two selected boundary conditions are deemed sufficient for practical

reasons.

For purposes of presentation of the results of this study in a concise manner

convenient for use by the analyst, nondimensional variables and design parameters

are introduced in the latter part of Section HI. These variables and parameters are

intro_._ced into the governing equations and d_aamic solutions obtained for the finite

length shell are summarized in nondimensional form.

A presentation of typical dynamic response results obtained from the solutions

is given in Section IV. In addition, the significance of damping, shear deformation,

rotatory inertia, and infinite duct solutions are discussed.

Design charts which yield maximum stresses as a function of the design para-

meters are presented together with an illustrative example in Section V.

A discussion of the nature of advanced problems which may arise or be significant

in ducting problems is presented in Section VI. Finally, conclusions and recommendations

are summarized in Section VII.
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H. TRANSIENTLOAD CONDITIONS

Transient pressures in propulsion systems are created by various means such

as opening or closing valves, pump surges, and the flutter of check valves. Such situa-

tions are especially severe during rocket engine start or shutdown. In this section,

pressure transient conditions of interest are identified, idealized and represented mathe-

matically for analytical purposes. A complete description of the ramp and sinusoidal

pressure forms is given.

The most severe transient pressure loading cases to be anticipated are those

associated with the rate of valve closure. When a valve is closed, the kinetic energy of

the fluid is converted into pressure. A pressure wave then travels along the duct with

velocity v. The velocity of propagation of the pressure transient is equal to the

speed of sound of the fluid ff the walls of the duct are inelastic. However, for elastic

ducts, the speed of propagation of the pressure transient may be significantly less than

the speed of sound in the fluid (see Reference 2-1).

The peak magnitude of the pressure wave, denoted as p, is indpendent of the rate

of valve closure and is only dependent on the initial fluid velocity, mass density of the

fluid, and the velocity v, of propagation of the pressure pulse (see Reference 2-1). How-

ever, the shape of the pressure transient will depend on the rate of valve closure and

for a constant rate of valve closure, the form of the pressure transient, referred to as

a ramp, will appear as shown in Figure II-1.

Valve closure time is defined by the symbol t . Thus for instantaneous valve
C

closure time, t = 0, the pressure transient will appear immediately after valve closure
c

as shown in Figure H-2&. The sequence of transient pressures which are induced in a

duct when a valve is closed at one end and the other end is attached to a tank is shown in

Figure II-2. The end of the duct connected to the tank can be considered as an open end

which reflects a pressure front as a rarefaction. Hence the transient pressure during the

time interval t < t < 2 t will be as shown in Figure H-2b. The time t =_/v, I.e., t is
O O O O

equal to the time it takes the transient pressure front to traverse the length of the duct.

Report No. 2286-950002 3
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Since a closed duct end will reflect a pressure front into a pressure and a rarefaction

into a rarefaction, succeeding traverses of the transient pressure will appear as shown

in Figures II-2c and II-2d.

All four distinct transient pressure traverses shown in Figure H-2 will be con-

tinually repeated in sequence if there is no friction. The presence of friction will tend

to decrease the magnitude of the pressure pulse as it traverses the cylinder. In addi-

tion, depending on the characteristics of the reflecting media at the ends of the cylinder,

there may be a pressure drop with each reflection. In the present study the magnitude

of the pressure transient was assumed to remain constant. However, the dynamic

solution techniques presented in the next section are not restricted to this assumption.

I
I
I

The description of the ramp pressure transient history which reduces to the step

case is now described in detail. It is assumed that the valve closure time, te, is less

than the time, t, required for the pressure transient to traverse the cyclinder: i.e.:
u

t <t.
c o

For 0-< t -t c

I q (x,t) I

! I

-I?'t
I

-_--v

----- X

=-__p
q(x,t) vt (x - vt)

C

q(x,t) = 0

o-<x- < vt

vt_< x<_
(2-i)

Report No. 2286-950002 5
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For tc<t < t
0

q(x,t)

LL :iI- vt
C

.vt

I _r X

q(x,t) = p 0-<x < vt-vt
C

_ t, (x-vt) vt-vt < x < vtq(x,t) vt c - -
C

q(x,t) = 0 vt_< x-<4

(2-2)

Succeeding expressions for the transient pressure history are conveniently

represented as the superposition of right and left traveling waves. Thus at t =l,/v,
o

the situation is as shown in the following sketch.

q(x,t)

vt -[

_-_V

7-_ X

q? _
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I For the time period to-< t-< t+t c

I q(x,t)

i _ ._----v

I v(2t ° t)

q(x,t)= ql(x,t) + q2(x,t)
O<x<- ._

I
I

I

,,-e_ _ right traveling load is given by

ql(x,_ = p
0_<x _<vt-vt

C

ql (x't) = vt---_p (x- vt)
C

vt- vt
C

< x<_

and the left traveling load is given by

q2(x,t) = 0

- -P (x+vt- 2_ )q2 (x't) vt
C

Similarly fort +t _< t_< 2t
O C O

0_( x -< 2_-vt

2_- vt_ < x_<_

q(x,t)

v(2to-0
.__'q2

v

4_'V

X

(2-3)

(2-4)

(2-5)
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I

I

I

I

I

Right traveling load

ql(x,t) = p

Left traveling load

q2(x, t)

q2(x,t)

q2(x,t)

= 0

_ -p
vt

e

= -p

(x + vt- 2_)

0< x_<_

0_ < x_< 2._-vt

l/

2_-vt-< x-< 2_-vt+vt
e

2_-vt+vt _< x_<.L
C

For

2t
O

_<t_<2t
O

+t
C

7
(t- 2t o)

V

!
!

2

Right traveling load

P
ql (x'0 - vt

e

ql(x,_ = 0

(x - vt + 2_ ) 0_< x_< vt- 2_

vt- 2_ _< x_<._

Left traveling load

q2(x,t)

q2 (x,t)

-P (x+vt- 2_- Vtc)vt
C

= 0

0_<x- 2_- vt + vt
C

vt- 2_+vt -< x _<_
C
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I

For

2t
O

+t _< t_<3t
e o

q(x,t)

v(t-2to)

I
I
I

I
I

I
I

I
I

I
I

Right traveling load

ql(x,t) = -p

P
ql (x't) - vt

C

ql(x,t) = 0

For

3t -< t -<3t
O O

0-< x - vt- 2_-vt
C

-_(x-vt+2_) vt-2_-vt _< x_<vt-2_
C

+t
e

vt-21 _<x_<_

q(x,t)

Right traveling load

ql(x,t) = -p 0_ x < vt- 2_- vt
e

- P (x-vt+2_)ql (x't) vt
c
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Left traveling load

q2(x,t) = 0

P
q2(x,t) = _--

c

(x + vt - 41)

0_< x< 4A_- vt

4._ - vt _<.x _<_

(2-11)

For

3t +t
O C

_< t_<4t
O

q(x,t)

f
v J

J
f

J

v f

v J

Left traveling load

q(x,t) = -p 0 <- x < 4_-vt

q(x,t) - vtP (x+vt- 4_-Vtc) 4_-vt_< x _< 4_- vt+Vtc (2-12)
c

q(x,t) = 0 4_- vt+vt _ x__(_
c

The sequence of pressure transients delineated above corresponds to four complete

traverses of the pressure front during the time 4 t . This process is continued into theo

next time interval by superposition of the pressure transient expressions for the first

time interval, 0 - t -< tc, with the pressure expressions for the last time interval

4t < t _< 4t +t which is defined as follows:
o o c
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q{x,t)

X

Left traveling load

q(x,t) -- p (x+vt- 4._-Vte) 0-_ x -< 4.1_-vt+vtvt c
C

qlx,t} = 0 4_-vt+vt __ x__
e

(2-13)

For valve opening, the form of the pressure transients are essentially the same

as the first two traverses described above except that the pressures will be of opposite

sign. The sequence of events which occur after these two traverses will depend on the

characteristics of the ducting and hardware on the down stream side of the valve.

Impulsive type transient pressures which are caused by pump surges, instability

of combustion processes, etc., can be represented by a traveling sinnsoidal pressure form.

Here, again, it will be assumed that the sinusoidal pulse emanates at the left end of the duct,

which thereafter is considered closed, and reflected at the other end which is connected

to a relatively large vessel. Thus, as was the case for the ramp pressure form, the

right end of the cylinder is assumed open and the left end closed.

The mathematical representation of two traverses of the pressure transient are

required to represent the complete characteristics of this transient pressure condition.

The sequence of pressure formulas for this case is summarized below. The half wave-

length of the assumed sinusoid is denoted by e and it is" assumed that e < _ .
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At the start of the pressure cycle we have for 0 -< t -< e
V

q(x,t)

P

" 4vt

e

v

q(x,t) = -psinTr (x-vt)
e

q(x,t) = 0

For

e<_.t_<t
V 0

0_< x_<vt

vt_x_

q(x,t)

e j
vt - I

V

!

_x

q(x,t) = 0

q(x,t) = -p sin _r

q(x,t) = 0

(X -- vt)

O_ x-< vt-e
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The following transient pressure fore is represented by the superposition of

right and left traveling sinusoid loads. Thus for the interval of time

e
t _<t_<t +--

O O V

q(x,t)

L V

F v(2t ° - t)

/
/ \

i/ ._

/

-1 -_ 2

ql

\
X

V

Right traveling load

qllx,t) = 0

ql(x,t) = -p sin "17"(x-vt)__

Left traveling load

q2(x,t) = 0

q2(x,t) = -psinTr (x+vt- 2_)

For

t +e_<t_< 2t
O V O

0 < x- < vt-e

vt-e _< x _<_

0-< x -< 2._-vt

2_- vt_< x _<_
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q(x ,t)

q(x,t) = 0

q(x,t) = -p sin_(

L

q(x,t) = 0

0<_ x __2l -vt

2_ -vt _x<_ 2_ -vt+e

2_ -vt +e_<x<__

(2-18)

Finally, the expressions for the interval 2 t
o

sketch below is given by the superposition of

-< t --2 t -; e_as shown in the
O V

q(x,t)

Vm m ,._pb

\

\
\

/
/

/

f

/__
/

/

< -I
v(t-2t o)

_4P V

V

_"-X

The right traveling load defined for the interval 0 _< t _< eand the left traveling load
v

defined by

(x + vt - 2 _ )
q(x,t) = -p sinzr

q(x,t) = 0

e

(2-19)
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As was the case for the ramp. the defined pressures are used in sequence as

time progresses.

In the limit as e-_0, and the area under the pressure distribution curve-_P the

sinusoidal pressure will approach the spike pressure transient case which is illustrated

in Figure m-9.
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HI. THEORETICAL DEVELOPMENT

A. BASIC EQUATIONS

For purposes of the present investigation, the basic structural model is the

thin-walled cylindrical shell of circular cross-section. It will be assumed that the

shell is made of an elastic, homogeneous, isotropic material, that it is loaded in an

axi-symmetric manner, and that its deformation is due te stretching and flexrare, shear

deformations being neglected for the present. Moreover, it is assumed that the

shell wall thickness is small compared to the shell radius, i.e., h << R.

In accordance with these stipulations, a free-body diagram of the shell element

is shown in Figure IH-1. Summing forces in the w direction and then taking the limit as

Ax --0, A 0 "4" Owe obtain

0Q x N_

Ox R
+ q = 0 (3-1)

Taking moments about an axis which is perpendicular with respect to the X-Z plane

and taking the same limit, we obtain

OM
X

: 0 (3-2)
Qx + 0x

Equations (3-1) and (3-2) are the equilibrium equations of the shell. The appropriate

strain-displacement relations are

0U W

x :_- ' _4' : _ (3-3)

and the stress-strain relations (Hooke's law) are

Eh
N - (E +re.&)

x l_y2 x W

N_ - Eh + Y_x

(3-4)
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iL wlu be assumed (see reference 3-i) that N
X

(3-3) into equation's (3-4) we have

x i_2 -_ ÷ v

N EhC:

= 0. Upon substitution of equation's

=0

=0

(3-5)

Thus

_u W
m_pm

x R Y (3-6)

and

Eh
N_ - w (3-_

R

From classical thin-plate theory, we have (Reference 3-2)

M_ = y Mx (3-8)

2
w

M = D (3-9)x 2
Ox

where D = Eh3/12(1-y2). Combining equations (3-1), (3-2), (3-7) and (3-9) we obtain

4
Eh

D c) w +--w=q (3-10)
c) x 4 R 2

D

The normal force intensity q is now decomposed into three distinct parts:

inertia force = -m --

2
w

t 2

damping force --
E] W

-2C --
at

surface traction = q (x, t)
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Therefore

_ 0 20w w
q=q-2c-- -m--

0 t Ot 2
(3-11)

and equation (3-10) becomes

0 4 0 2w Eh d w w
D_ +-- w+2c-- +m

0 x 4 R 2 d t 0 t2
=q (x,t) (3-12)

Equation (3-12) is regarded as the basic equation for the present investigation.

B. SHELL OF INFINITE LENGTH

1. Spike Pressure Wave

A solution of equation (3-12) will now be developed for a shell of unbounded

length under neglect of damping (c = 0). The shell is assumed to be subjected to a spike

loading of magnitude P (ring-line load, see Figure IH-2) which translates with uniform

speed v in the direction of the shell axis x.

As a prerequisite for a unique solution, we require certain basic physical

shell properties with respect to wave propagation along the x-axis. Under neglect

of damping and assuming zero surface tractions, equation (3-12) assumes the form

D 04 Eh a 2-- Ww + w+m =0 (3-13)
4 "_ t 2Ox 0

If we assume the existence of waves of the type

w = e i (kx -I_t) (3-14)

where k is the Wave number and F is the frequency, and substitute equation (3-14) into

equation (3-13), we obtain the following dispersion relation (relation between frequency

and wave number) :

F=
_/ m m R 2

Report No. 2286-950002
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The phase velocity _ is given by (see Reference 3-3)

a mR½2
(3-16)

and the group velocity is

2___D_Dk3
dr m

VG- dk = /D k4+ E h

mR-

(3-17)

A typical plot of phase and group velocity, using equations (3-16) and (3-17), is shown

in Figure III-3. The following general statement can be proved by elementary means

with the help of equations (3-16) and (3-17): The minimum phase velocity occurs at

the point where the phase velocity and group velocity are equal. At that point, the wave

= = 4 /r'E_h . We s_ll use this result in the subsequent
number has Lhe value k _" _/ R2D
development.

It will be convenient_ to nondimensionalize the coordinate x and to describe

the response of the shell in a moving coordinate system. Thus we let

= (x - v t ) r (3-18)

JEhwhere T = 2
DR

If we change variables in equation (3-12) in accordance with equation (3-18) and

neglect damping, we obtain

d4 d2 R 2
w + 2), w + w- q(_)

dg4 dg2 Eh
(3-19)

where

2 I

2 k = J12 (1-y) mRv 2

Eh 2
(3-20)
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The change of variable, equation (3-18), may be given the following physical inter-

pretation: An observer fixed with respect to the x-coordinate will see the (spike)

load advance in the direction of the positive x-axis, and to him the deflection of the

shell will appear to be a function of x and t. However, an observer fixed with respect

to the _ -axis will move with the advancing load and to him the deflection surface will

appear stationary, i.e., independent of t and a function of _ alone. We note that by

neglecting damped transients due to the starting of the motion, we have made the

implicit assumption that the load has been moving for a sufficiently long period. Thus,

we shall concentrate on the steady-state dynamical process as characterized by equation

(3-19).

A formal solution of equation (3-19) will be obtained by the Fourier Transform

We define the following (complex) Fourier transform pairs:Approach.

d {I (3-21a)

J- C::/)

w(_)-,--r_ w(()_ d_

: fjoq(_) - 2_r (a)_ da

o

Q(a)-_ 2_r J-a_ q(_)e d_

(3-21b)

(3-22a)

(3-22b)

We now Fourier transform equation (3-19) with respect to _ , i.e., we multiply each

i{l _ _ and integrate between the limits -o0< _ <term of equation (3-19) by 9 d

If it is assumed that w(_ ) --" 0, w'(_ ) -- 0, w"( )-- 0, w'"(_ ) -- 0

as _ -_ ± 00 then we obtain

R 2 Q(a)
W (a) : Eh 4 2 (3-23)

(a -2_a +I)
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Upon substitution of equation (3-23) into equation (3-21a), we obtain the formal

solution of equation (3-19):

R 2 1

I w(_') _/r 2"tr E---h-

I

I
I

I
I
I

I

Q(a)da

4-2_ a 2+1)
(3-24)

To obtain the Fourier transform representation of the spike load, we shall

consider the limiting ease of a uniformly distributed load. With reference to Figure

III-4, we have

(3-25)

Thus, using equation (3-22b), we have

rOD

= 1 P_ _ _" 2Bp sinaB

Q (a) J 2"#"

2_p
If we now take the limit ofQ (a) as_ -_ 0and

7
transform representation of the traveling spike load:

-" P we obtain the Fourier

I
I

I
I

I
I

7
Q (a )= P (3-26)

.,/" 2_r

The improper integral in equation (3-24) will now be evaluated, when Q ( cl )

is given by equation (3-26), by the method of the calculus of residues. There will be

two distinct cases which must be considered: The poles of the integrand in equation

(3-24) are (a) complex and (b) real. In case (a) equation (3-24) assumes the form

__0O -i_ a

_'R 2 P _ da
W ( ) 2 7r Eh ( a -a-ib) ( a +a+ib) ( a -a+ib) ( a +a-ib)

(3-27)
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and _, < 1. It will be convenient to consider the following contour integral in the

complex z plane:

-i z
s dzI = (z-a-ib) (z+a+ib) (z-a+ib) (z+a-ib) (3-29)

The contour over which this integral is to be evaluated consists of (see Figure Ill-5)

the upper or lower semi-circle of radius R and the segment of the real axis R > I a I

It is easy to show that the line integral, equation (3-29), vanishes for _ < 0 when

taken over the upper semi-circle C 2 as R -_ cO Similarly, it vanishes for _ > 0

when taken over the lower semi-circle C1 as R -_ cO . Thus by virtue of the residue

theorem we have for _ -> 0

)'R 2 p

I w(_)= 27rEh -27ri (KI+K2) , _ _ 0
(3-30a)

)'R2 P " 2 rr i + , - 0 (3-30b)

I where

I K1 =

J K2 =

J K3 =

-i_ (a-ib)
O

(-2ib) (2a) (2) (a-ib) (3-31a)

-i_ (-a-ib)

(2) (-a-ib) (-2a) (-2ib) (3-31b)

-i _ (-a+ib)

(-2a) (2ib)(2) (-a+ib) (3-31c)

_s -t _ (a+ib)
I K4 = (2) (a+ib) (2ib) (2a) (3-31d)
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Upon combination of equations (3-30) and (3-31) and a certain amount of simplification

we obtain the solution of equation (3-19) valid for _, < 1:

R 2 T P e b_

where a and b are defined in equation (3-28).

In case (b) where )_ • 1 we must proceed in a different manner. In this case

the poles of the integrand of equation (3-24) lie on the real axis, and it is appropriate

to write equation (3-24) as

R 2 _'P 6, da

w(_)= 2-_h (a +A)(a -A)(_ +B) (a -B)

1
where

A =a+b, B =a-b

a , b

(3-33)

(3-34)

and )_ • 1. The improper integral in equation (3-33) will be evaluated by residue cal-

culus, and the method is analagous to the case )_ < 1 except for the path of integration

in the vicinity of the poles (see Figure IH-6), where the path is indented. The association

of the poles with the upper or lower half plane depends on physical (energy) considera-

tions. With reference to Figure IH-3, we note that corresponding to a given phase

velocity greater than _ rain' there are two wave numbers kI , k2, one of them, k1 < )_ ,

the other )r < k 2. For k 2, the group velocity is always greater than the phase velocity,

and therefore this represents waves moving ahead of the spike at _ = 0. For the

Report No. 2286-950002
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smaller wave number k 1, the group velocity is always smaller than the phase velocity,

and therefore k 1 corresponds to waves behind the spike. Since energY must travel

away from the moving spike disturbance, it becomes clear from the foregoing that the

poles at a = _A are associated with the case _ > 0, while the poles at a = _B are

associated with the case _ < 0. This explains the manner of indentation of the contour

in Figure I]I-6. Thus, invoking the residue theorem we have

(3-35a)

ra _ P- • z,,"i _i +K#. _ >o
w(_) =--2_ Eh

- ra 2p_ • 2_ i<_3+_4_,_ <°
w (_) = --2_ Eh

where K 1, K 2 K3 and K4 are the values of the residue of the integrand function of

equation (3-33) at a = A, -A, B, -B, respectively. These values are givea by

+i_A
0

= (_) (A+B)(A-B)

Q

Kg. = (-2A) (-A+B) (-A-Bb

+i_ B

g 3 = (B+A) (B-A) (2B)

(3-36a)

(3-36b)

(3-36c)

_,_ B
0

I g 4 = (A-B) (A÷B) (213)

If we now combine equation's (3-35) and (8-36) and simplifY, we obtain the solution.

- r_P _ -
w(_)=_ B(B z_A 2)

I
I

where A and B are defined in equation (3-34).

I
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2. Step Pressure Wave Shape

We now consider a shell of unbounded length subjected to a uniformly

distributed radial pressure load of intensity p advancing in the positive x-direction

as shown in Figure ]]1-7. The load is characterized by

q = p = constant, _< 0

q=0, E>0

(3-38)

With reference to Equation (3-19) we have

d4w(1) + 2k d2w(1) + w (1) = 0 (3-39)

d_ 4 d_ 2

d4w (2) d2w (2) w(2) pR 2+ 2X + =--

d_4 d_2 Eh

where the superscripts (1) and (2) refer to the region _>O andS< 0, respectively.

Solution of Equation (3-39) must be bounded for_-. + _, and at _ = 0 we require

that the deflection, slope, moment, and shear be continuous, i.e.,

w(1)(o) = w(2)(o)

_--o d_ _=o

(d =rdw/
(3-40)
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The characteristic equation obtained by assuming w (i) =@a

a4+2kaand substituting in the homogeneous Equation (3-39) is:

and its roots are

, i = 1, 2; _ = constant,
2
+ i = 0 (3-41)

(3-42)

Evidently the roots of Equation (3-41) are complex for 0< k < 1 and pure imaginary

for 1< k . Solutions of Equation (3-39) subject to the conditions prescribed by Equa-

tion (3-40) and bounded ate-* ± _ are found in the usual manner when the roots of

the characteristic'equation are complex (0< k < 1):

- osb _+ "2ab ' sinb
W o

where

w(2)
W

0

,_o

.a_ _ a2_b 2- _ , cosb_ + 2-ab sinb + 1,_ -< 0

p R 2
W =

o Eh

(3-43)

42 b= j_'TX

In the case of pure imaginary roots (l<k), the solutions of Equation (3-39) are

w (I)= C1(1) cos a _ + C2(1) sin a _ + C3(I) cos b _ + C4(1) sin b _-

cos b _ + C2(2) sin b _ + C3(2)w(2) = c1(2) cosa_ +C4 (2) sina

(3-44)

where

and there are only four equations (3-40) to determine the eight constants of integration

ci(J), i = 1, 2, 3, 4,; j = 1, 2. At this point we may use the concept of group velocity

to determine the appropriate steady state motion. The group velocity
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is the velocity of energy transport, and the physically appropriate solution requires

a flow of energy _ from the load front. With reference to Figure IH-3, we note

that corresponding to a given phase velocity greater than _ min' there are two wave

numbers, k1 and k2, one of them kI < )r, the other y< k 2. For k 2, the group velocity

is always greater than the phase velocity, and therefore this represents waves moving

ahead of the load front at _ = 0. For the smaller wave number kl, the group velocity

is always smaller than the phase velocity, and therefore k 1 corresponds to waves

behind the load front. Since a > b, this argument enables us to set

C3(1) = C4(1) = C3(2) =C4(2) = 0

in Equation (3-44). The remaining constants in Equation (3-44) are now determined

by applying continuity conditions expressed by Equation (3-40), and the results are

(i< k):

w (1) b 2 cos a
= - ; _->0

w 2 b 2O a -

2
w (2) a cosb_

w a 2 b 2O

+ i; ___ 0

(3-45)

where

W

a = Jr-rX ÷

pR 2

EhO

I
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Ce SHELL OF FINITE LENGTH

1. General Development for Arbitrary Homogeneous Boundary Conditions

a. Free Vibrations

We assume a solution of the form

i

D

!

!
!g

8

w -- w(x) • r(t) (3-46)

of the homogeneous Equation (3-12) (i.e., q = 0). Upon substitution of Equation (3-46)

into Equation (3-12), division by W • T, and some re-arrangement, we obtain a

separation of variables

"" 2m T 2c T WIV Eh m w
= _ + _ - (3-47)

D T D T W D "21_ D

°

where w is an undetermined constant.

Consequently

"° 2C t { 2TT +_ T + = 0 (3-48)
m

and

WIv- k4 W = 0 (3-49)

where
k 4 m 2 Eh=- m (3-50)

D DR 2

The admissible, homogeneous boundary conditions corresponding to Equation (3-49)

may be stated as follows:

One member of each of the products

(wQ), (w' M)

vanishes at x = 0,_.

It can be shown (see Reference 3-4) that for a given set of homogeneous (admissable)

boundary conditions there exists a denumerable infinity of mode shapes W .
n"
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n = 1, 2, 3, • . . which satisfy Equation (3-49). Moreover, corresponding to each mode

shape W there is a natural frequency ¢0 , and vice versa. These mode shapes satisfy
n n

the orthogonality relation

'_ w (x) w (x) dx= 0 (3-51)m n

o

provided m _ n. For instance, when the ends of the shell are simply supported we

have

W =W" =0, atx=Oandx=Z (3-52)
n n

In this case the solution of Equation (3-49) which satisfies the boundary conditions,

Equation (3-52), is

nTrx
W (x} = sin -- , n=1,2, 3 ....

and the associated frequencies are

(3-53)

7 ' )
2 1 Eh n _r= -- + D

n m 24
(3-54)

When the ends of the shell are clamped we require

/2
W = W I = 0 at x = 0 and x =A_

n n
(3 -55)

In this case the mode shapes are given by

W (x) = cosh k x-cosk x-a (sinh
n n n n

where
cosk_- cosh k _2

n n

an sink _- sinh k 2_
n n

and k _ are the roots of the equation
n

cost _" cosh k _ = 1
n n

k X - sin k x)
n n

(3-56)
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Frequencies associated with the mode shapes of Equation (3-56) are given by

wn = "_m + --
DR 2

where n = 1, 2, 3,...

b. Forced Vibration

(3-57)

!
!

|

|

!

of the form

We now consider the complete Equation (3-12) and assume a solution

{D

w (x, t) = _" Tn(t) , Wn (x) (3-58)
L.a
n=l, 2...

Upon substitution of Equation (3-58) into Equation (3-12), and subsequent utilization

of Equation (3-47)we obtain

({D "" 2c

T +n m

n = 1, 2, . . .

\

+w2 T _ W - 1
n n n n m q (x, t) (3-59)/

Both sides of Equation (3-59) are now multiplied by Wm(X), and are then integrated over

the length of the duct. Upon application of the orthogomMity relation, Equation (3-51), we

obtain

+ __ = _ (x,t) - W Ix) dx (3-60)Tn m n n n n

o

where 4 f_ Wn2Kn - 2
O

!
il

(x) dx (3-61)

The initial conditions for the duct are now translated into the initial conditions on T .n

At t = 0 we have (see Equation (3-58)

V"
T (o) W (x)w(x,o) = Wo(X) : /-_ n " n _o-u_p

n = 1, 2, . • •
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_v (x, O) = _¢ (x) = _ 'r (o) o W (x) (3-63)
o n n

n = 1, 2, . . .

Multiply Equation (3-62) by W m (x) and integrate the result over the length of the shell.

Upon application of Equation (3-51) we obtain

4e _

Tn (o) - ZK-n] TMO (x) W n (x) dx

0

A similar procedure, when applied to Equation (3-63) results in

1

f _ ,x,Wn,X,_x÷n(o) : _ o
0

(3-64)

(3-65)

It may be concluded that for given mode shapes Wn (x), load q (x, t),

and initial conditions w ° (x) and w ° (x), we may calculate the shell response by solving

Equation (3-60) subject to initial conditions Equation (3-64) and (3-65). Specific

application of the above theory follow.

. Sample Specific Solutions

a. Dimensional Form

(1) Simple Support

(a) Spike

We now consider the specific case of a spike (ring load) traveling

with speed v through the duct. The duct is simply supported at x -- o and x =_. Thus

the eigenfunctions are given by Equation (3-53), and the associated frequencies of free

vibration are given by Equation (3-54). It is now required to expand the spike load in an

infinite series of the eigenfunctions. This will be accomplished by the expansion of a

distributed load of length 2_ (as shown in Figure III-8), and then taking the limit as

te-* 0. With reference to Figure HI-8 we have

q (x,t) --O, o< x<.vt-@

q(x,t)--p, vt- f< x< vt+¢.

q (x, t) = o, vt+_< x<_

(3 -66)
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q (x,t)

P

0

q_--------vt

IIIIIIIII--v
i_ _ x

,!

Figure IH-8. Spike Load as the Limit of a Distributed Load
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Consequently

f2¢ /vt +eq(x,t) • W (x) dx= psin
n

o vt-¢_

2p_ sin n_rvt sin n_rE
l

If we now take the limit of this expression as c --

| o
• W (x) dx = P sin

n

n@'x
dx

I

o and 2 c p = P we obtain

nTvt
(3-67)

!

For the return cycle we have

q (x, t) = O,

q (x, t) = -p,

q (x, t) = o,

o < x<2_-vt-c

2_'- vt +_< x<L

and we have

2_-vt+ E

q(x,t) - W n(x) dx = -
-vt-

n'Tx
p sin B dx

2pl sin n_vt sin n T
nT --t

as before. We may continue this process and show that for the three cycles shown

in Figure HI-9 the expression, Equation (3-67) holds with appropriate time intervals

as indicated in Figure HI-9. We also note that for the simply supported duct (see

Equations (3-61) and (3-53)

1 J' 2

n n =-_'- sin -- = 2

o o

(3 -68)
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t Figure rU-9a
q (x, t)

t
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!

P

q (x, t)
Figure m-9b

P

-_v

Figure III-9c

Figure III-9. Moving Spike Load
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Combining Equations (3-67), (3--68), and (3-60) we obtain

I _ 2c " 2 , - 2 nT vt

I _n + m Tn +_ Tn = m-_ Psin T (3-69)
It is now assumed that the duct is undisturbed with respect to displacement and velocity

i!
at t = 0. _us, from Equation8 (3-64) and (3-65) we have the initialconditions

@

T (o)= T (o)= 0
11 11

(s-vo)

With the assumption that damping is below its critical value, i.e., Wn2 > .(c/m} 2, the

solmtion of Equation (3-69) subject to the in/t_tl conditions, Equation (3-70) is given by
ZP!

cosw t
n

1,.. [ 2c 2

+
-- 2 2
--n m

n

- -- cos at
2

m {0
n

(s-v1)

where

a -_-

nlrv

t

Eh B

D = 12 (l_v 2)
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q(x, t)

TT
0

vt _l_
4 -_t ---_

O<t< _e
V

X

Figure HI-lOa

 rTIITTtTTIT1
0

._._< t <2-_-- _
V V

Xv

Figure III-lOb

Figure III-lO. Moving Step Load
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Thus the complete solution for the simply supported shell,

applicable to the loading cases indicated in Figure III-9, and appropriately restricted

to the time intervals indicated in the figure, is given by

w = Tn (t) sin
n=l

where T It) is defined in Equation (3-711.
n

(3-72)

(b) Step

We now calculate the response of a simply supported cylindrical

duct to a uniformly distributedpressure load in the form of a step moving in the direc-

tion of the duct axis. We shall neglect clamping in the subsequent calculations,i.e.,

c = O. In this case we have (see Figure III-lOa)

q (x, t) = o,

II Consequently, for O<t<--'_v we have

o,¢ x <vt

vt < x < _ (3-73)

_o q (x, t) • W (x) dx -- p sin n w" x
ax

o
nTr vt)

P_ 1 - cos

hase _ t < 2
For the unloading p T < --

q (x, t) =p, o< x< 2_- vt

0 O

!!1 Report No. 2286-950002

as shown in Figure IH-10, we have

(3-74)

(3-75)

(3-76)
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Substitution of Equations (3-68) and (3-74) into Equation (3-60) (with c = 0) results in

/ \
*" 2 2p _ n _r vt

T + w T - _1 - cos
(3-77)

n n n mn 'r l /
The initial conditions are expressed by Equation (3-70). The solution of Equation (3-77)

(_n*v)subject to initial conditions, Equation 13-70), is w -n Z
2 cos wt

2pnlrv n

Tn(t) = _2 2 ( 2 22).m w n Wn2 _ _2 v

cos n'T vt ) ]

2p 1

% 2 2 2mn'tr tan2 2 _ n "tr v
_2

(3-78)

where

o[  L4 4]= " + n lr 4

n m_4 DR 2

Thus, the response of the simply supported duct to the moving pressure load shown

in Figure IT[-10 is given by Equation (3-72), where T n (t) is expressed by Equation (3-78),

and t is suitably restricted as indicated in Figure III-10.

(2) Clamped-Clamped

(a) Spike

In calculating the response of a clamped duct to a propagating

disturbance in the form of a spike we apply the limiting procedure, as before, to a

uniformly distributed load over the length 2 c . Thus the load distribution is given by

Equation (3-66), but the eigenfunctions are characterized by Equation (3-56).
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Consequently

q (x, t) • Wn (x) dx = osh
g

k x-cos k x- _ _sinh
n n n

coshk vt-sink _ cosk vt
n n n

-ansinh k vt sinh k { + {l sink vt sink C)

i n n n n n

We now take the limit of Equation (3-79) as _-- 0 and 2 p E -* P

f_q (x, t) w (x) dx :P (cosh k vt - cos k vtn n

O

kx-sinkn nX)1

(3-79)

dx

- ansinh knVt+ an sin knvt // (3-80)

We also note that in the case of a clamped duct (see Reference 3-4)
1

f Wn2
(x) dx = "_-K n

O

where

K
n

d2W
n

d (knX) 2
2

Upon substitution of Equation (3-56) into Equation (3-81) we obtain

K : cosh k _COS k2- (_ (sinh k_+ sink =4n n n n n

Combining Equations (3-60), (3-80), and (3-82) we obtain

"" 2 P [

+ ¢_. T = Lc°shk vt-cosk vt- aTn n n _ n n n
sinh k

n vt + an sink n

(3-81)

(3 -82)

(3-83)
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•l--he solution of Equation (3-83) for the non-resonant case

2 _ D ?_hl4 k 4 .4) 2 2

and for initial conditions, Equation (3-70), is

T (t)=A cos w t+B nsin to t
I1 n n 11

/

p /cosh k vt- q sinh k vtn n n

+'_ _" w2 2 2+k v
n n

+

{xsink vt-cosk vt \
n n

_o 2 k 22v
n n

(3-84)

where

2P
An = m-_

22
k v

n

33
2Q Pk v

n n 1
Bn mLw 4 4 4

n w k v
n n

and the complete solution valid for 0< t<- i- corresponding to the moving spike in a

clamped shell is given by Equation (3-72), where T (t) is represented by Equation
n

(3-_).

(b) Step

The loading is shown in Figure HI-10a and is expressed by Equation

(3-73). It is applied to a clamped duct. Thus, for 0 < t< _,

(x,t) W (x) dx p eosh k x-cosk x
n n n

o

k

--_ n si_ 1_ x-_-_n n sin knX) dx - _P (

__ sin h k vt - sin k vt
n n

\
- a cosh k vt- a cosk vt+ 2a | (3-85)

n n n n n/

Report No. 2286-950002 46



ii+

I1
1

l
I

il

I=

II
Ii
II

Combining Equations (3-60),(3-85) and (3-82), we obtain (without damping c = 0)

Bp

T 2T - P (sinh k vt-sink vt

_n n m._k n _ n n

cosh k vt- O cosk vt+2 O
an n n n n /

(3-86)

The solution of Equation (3-86) subject to initial conditions, Equation (3-70), is given

2 2 v2):by( ton _k n

siuh k vt -T (t)--A cos m t+B sin _ t + P_ " "--

n n n n n m_ k \ Wn

sink vt+ a cos k vt 2a \
n n n n

2 22 + --'-"-'2
_o -k v _0

n n n

a eosh k vt
II II

(3-87)

2 2
+k v

11

where 2

2pa _'ww /
A - n n 1

n mj_k 4 4 4 + 2
n - k v to

n n n

2pv3k 2

B = m_to 4 4v4n n to k
n n

Z
Thus the complete solution valid for 0 < t < -- corresponding to the moving spikev

in a clamped shell is given by Equation (3-72), where Tn(t) is characterized by

Equation (3-87).
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b. Dimensionless Form

The preceding sample solution for shells of finite length were derived

in dimensional form and clearly illustrate the solution technique. However, design charts

presented in this report are nondimensional and consequently for convenience in their pre-

paration solutions were derived directly in nondimensional form using the nondimensional

form of Equation (3-60)which is given by Equation(3-109_ Thus T is essentially replacedn

by its nondimensional counterpart F . The procedures used to determine directly the
n

nondimensional solutions, which are summarized in Section H-E are outlined below for

the ramp and sinusoidal pressure transients. Reference in the following is made to equations

in Section H-D and H-E and therefore it is suggested that they be read first.

(1) Simple Supports

(a) Ramp

_abstitution of A (I") as given by Equation !3-114] into Equation {3-I09}
n

yields the differential equations for the time dependent function Fn(1") for the ramp. Thus for

the first two time intervals 0 < r < 1-c and Tc < l" < 1 (refer to Figure HI-12a) we obtain

respectively for 0 < 1- < T ; = F )
-- c (Fn n 1

d2F d F 2 _ F 1

n + 2a _ + _'_n F --

dr 2 dr n XK L_c K rn n e

for r < T_< 1; (F = F )

c n n 2

n + 2a----_n +_ 2 F =- sinK 1" -sinK (1"-
d1" n n _,K n K 1" n nd1" n c

(3-89)

The general form at the solution of these second order differential

equations is givenby Equation 3-120. The constants of integration A 1 and B 1 in, the solution
n n
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for the first time interval 0-<r < r

(refer Equation 3-70).

F (o) = e
n 1

d F (o)
nI

=0
dr

are obtained from the following initial conditions
C

(3-90)

The constants of integration A 2 and B2_ in the solution for the second time interval
n Lt

r _ r _ 1 are determined from the conditions at time T = r . These conditions are
C C

Fnl (Tc) = Fn2 (Tc)

dF d F
n

nl (Tc) = 2 (I" c)

dT dT
(3-91)

Finally, the solutions to Equations p-88_and {3-84, subjected to initial conditions of Equations

(3-90) and (3-91) are given by Equations (3-120) and (3-124).

function F n
time intervals 0 _< T

(b) Si.nusoid .

The governing differential equations for the time dependent

(r) for the sinusoid are obtained from Equations (3-104 and (3-115_ Thus for the

_< E and E _< r _< 1 (refer Figure HI-12b) we have respectively

0_< T _<¢;(Fn=Fnl )

d2Fn2 dFn 2 _ [ n _ < . i ..%____)]----+ 2_ -_" + an Fn- "-- E 2 2 sinKnT-nE sndr )_Kn 1- n

i
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_ 1" _.1; (F n=Fn2 )

d2F dF _ n E

n + 2a _ +_ 2 F- 2 sin Kr +sink ( r -E
dr 2 dr n n kK n __ 2 n n n

(3-93)

The initial conditions for Equation (3-92) axe (refer to Equation 3-70)

F (o) = 0
n1

dF Co)
nI

dr
=0

(3-94)

The constants of integration for Equations (3-92) and (3-93) are obtained

for conditions which must be satisfied at T = E . These conditions are

F (E) = F (E)
n1 n2

d F (E) = dF (_)
nI n 2

dr dr

(3-95)

The solutions to Equations (3-92)and (3-93)which satisfy Equations (3-94) and (3-95) are given

by Equations (3-120) and (3-125).

(2) Clamped - Clamped

Ca) Ramp

Equations (3-109) and (3-117) _Tiel'd the differential equations for the

time dependent.function F (T) for the ramp and clamped-clamped boundary condition. The
n

Report No. 2286-950002
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differential equations for the intervals 0 S r < lr and z'
c c

I O_r_rc; (Fn =Fn I)

d2F d F

I n n 2 n B+ 2@_-_- +_ Fn =
dT

n

2 _kKn 2 T c

sinh

I
r _ rS 1; = Fn2 )

i c (Fn

S 1"_ 1 are given by

I( cosh K n

• "+ sin K z- )Kn n

T + cosK T _2|
n /

+2Kn a n T 1

(3-96)

d2F dF

n + 2_n +_/,n 2 F -
dr2 dr n 2_kK 2

n
iF

c
cosh K 1" - cosh K

n n (T- T ) /C

I

+ (cOSKnT-cOSKn(T-TC) )

-a
sinhK r -sinhK (T- r c) )n n n

sinK T -sinK (1. _- T c) }-an n n / +2Kn n

(3-97)

The solutions to Equations (3-96) and (3-97) are obtained with initial

conditions given by Equations (3-90) and (3-91) and are given by Equations (3-120) and (3-128).

(b) ,Sinusoid •

For this case the differential equations for F ( T ) are obtained
n

from Equations (3-109) and (3-118). Thus for the time periods 0 _ T_< e and __< r --<

irefer to Figure m-12) we have
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for 0 --<T _. _;(F n Fnl )

d2F

! n +_ 2 Fn os cosh + --
dr _ + 2a _7 n = 2kT -E---

L

I

!

7rT
sin

E

-a 2sin-- - sinh -- --- cos
n

(3-98)

I for __<r_< 1;(F n=Fn2 )

I

I
l
l

i
I

d2FdT + _u dF +_ F - 2_kBclr [

n _- n 2 _osh TT +cosh_r_'-_,. TT ,r
2 d_ n n _ _ - ---_,-sin_

T (r -_ ) Ir (r-E)
+ sin

E E

-a sinh +sinh 7r (T C) + --cos--
n E E E

_(T-_) _<T-E ))]
+ cos (3-99)

E

The solutions to these differential equations are obtained with

initial conditions of Equations (3-94) and (3-95) and are given by Equations (3-120) and (3-129).

II

[!

I,
i,
It
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D. NONDIMENSIONALIZATION AND DESIGN PARAMETERS

From a designer's point of view, it is desirable to reduce the number of design

charts to a minimum. This is accomplished by the introduction of design parameters

which combine as many of the problem variables as possible. From

a uondimensionalization of the elastic response solutions obtained for the infinite and

finite length cylinder, three independent design parameters were indicated. These

are designated as the speed parameter, _ , length parameter,_ , and damping

parameter, _.

The speed parameter, _, was introduced quite naturally earlier in the determina-

tion of the dynamic solution for the infinite shell (see Equation 3-20) and is defined as

follows:

2

k=_p v R
2 Eg h'J12 (1 -y 2) (3-100)

where v is the speed of the pressure transient front and p is the weight density of the

cylinder material. It is significant to note that k is equal to the ratio of the squares

of the speed of the traveling pressure transient and the critical speed for an infinitely

long cylinder.

For convenience for the determination of k, Figure M-11 was prepared and gives

directl_cuy asaasa function of the velocity of the pressure transient and the expression

P */l-y2 -0.95x10E It appears that for manv_ materials" we have P J_E-y 2 -8

Examination of Figure III-11 indicates that the practical range of values for _ is

0 < k < 6. However, values of k _ 10 are possible. In general, small values of _k

will govern in the relatively thick walled piping systems of the smaller propulsion

systems whereas large values of )k prevail for the relatively large thin walled ducts

used in big booster propulsion systems.

The two remaining independent design parameters are the length parameter

defined as

 /12 2) <3-1ol)B = -g-/-
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Figure HI-11. Graphical Determination of Speed Parameter
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and the damping -_ °+para_._mr defined as

a = -_- p_'-_ (3-102)

where c is the viscous damping coefficient.

From an examination of the various cylinder geometries of interest in propulsion

systems, it was found that the length parameter can vary over a relatively large range

primarily due to the_ 2 term. However, it appears that for most practical circumstances

will vary in the range

102 < _ < 106

However, it must be noted again that values of _ < 102 and _ >106 are possible.

The damping parameter defined by Equation (3-102) is actually the ratio of the viscous

damping coefficient and the critical damping coefficient for the first harmonic, i.e.,

n = 1. The critical damping coefficient is thus given by

:__h _ (3-_o_c
cr R _/ g

Hence for the solutions presented in this report, the damping parameter will be

limited to the range of values

0<_a<_l.0

The actual value of a that should be used in a design situation is not known, and

its determination is beyond the scope of the present report. However, as will be shown

later, it could be a significant factor in the determination of the true dynamic response

of ducts with contained fluid. This aspect of the problem is discussed further in Section VI

with regard to the interaction of fluid and duct motions (coupled motion).

The dynamic solutions were nondimensionalized in such a manner as to yield non-

dimensional radial deflections

are defined by
M

0 W m X
W =_" M =_

w ' x M
O o

w and axial bending moment M .
x

These parameters

(3-104)
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where

w = pR2 • M p Rh
o Eh '

o _/12 (1 -_ 2

(3-105)

The spike load is essentially a limiting case of the sinusoidal pressure load but it

must be given in terms the radial line load P instead of the pressure p.

of this fact, the expressions for w and M for the spike are given by
O O

4j/! 2 3/2

Wop E

ph 1/2 R1/2
M

Op 4J12 (1 -y 2)

As a consequence

(3-106)

The hoop and circumferential bending moment stress resultants are given in terms

of ,_ and .M by (see Equations 3-7 and 3-8).
X

Eh w
0 --

w
i

M_ =y M MO X

(3-107)

By the suitable combination of the stresses {r x and o-_ obtained from the stress

resultants Mx, M_ and N_, the state of biaxial stresses at any point in the duct can be

determined. (see Section V-C, Illustrative Application of Design Charts.)

Nondimensional variables introduced with regard to the representation of the ramp

and sinusoidal pressure transients are shown in Figure III-12. Other nondimensional

variables are introduced as they appear.

E. SUMMARY AND SOLUTION OF FINAL GOVERNING EQUATIONS

1. Final Governing Equations

Introductions of the nondimensional design parameters and variables discussed

in Section llI-D into the expressions presented in Section III-C for the dynamic solution of a

cylinder of finite length results in the following nondimensional forms for the deflection

and bending moment expressions
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(D

n=l
(3-!oa}

Mx ='_" F n (r) _ g 2

n=l

The function F (r) is obtained as the solution of the following differential
n

equation which is the nondimensional form of Equation (3-60)

d2F dF

n + 2_-.......nn +_-_2 F = A (T)
dr2 dr n n

(3-109)

i where =a

I _._2 I 4)
n = 2_--'_ (_2+Kn

$

I

I

I

iI_I

I
I

I

(3-110)

is the nondimensional natural frequency. The nondimensioual functionNote that_
n

A (r) corresponds to the expression on the right hand side of Equation 3-60 and i_ _,iven by
n

1

A iv)- 2B f _(_,r) Wn(_)d _ (3-1_)
n kKn

O

where q = q/p, the nondimensional pressure.

The functions Wn (_) '_n and Kn vary with the prescribed, boundary conditions and

they are summarized, for the cases treated in this study, as follows. For simple-simple

support conditions

w (_) -- sink
n n

_ 2 w
n 2

= -K

_2 n
_n = 2

sin Kn

K = I17/
n
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for fixed-fixed support conditions

= - (s_ x _ - sinX._)wn(_) cosh&_ cos_-_ n

a
cosK -coshK

n n

n sinK - sinh K
n n

I _n =4

I

I

I

I

I

1 = cosK coshK
n n

Note that K are the roots of the last expression of Equations 3-113
n

(3-113)

Substitution of the expressions for the various transient pressure cases defined

in Chapter H into Equation 3-111 and integrating results in the function A (T), the
n

nonhomogenious part of the differential equation, Equation 3-10_ The functions obtained

for the ramp and sinusoid transient pressures are summarized below for the two

boundary conditions under investigation.

(1) Simple-Simple Supports

(a) Ramp Pressure Form, r < 1
C

I T C--<T--<I A n(T) _ F I-__ 1_-_---{ sinK T- sinK (T- / )'_-"l
nl L l_n -t- C \ n n _/j
I

1-<r<_l + r c A n(r) _ L n c

1 +r c _T__2 A n (r) _ L n c

F 2T-4-T )iI o An(Z') _K_ IL -- c --1-- (sin K (r-2) - sin K ('-2- rc"rc l_nZ'c \ n n
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2 +T _< 2"<_3
C

3_<T_<3 +1-
C

3 +r _< r_<4
c

4_<r<4+r
C

A
n

A
n (1-) =-_nn l+K-'-"_n c n

A
n

A
n

-_ [ 1(1-) - _,K 1 + K_
n n c

(1-) =- _,K r
n c

sin K n

1
+

K
n

+A (1-)[n 0<T_<r
C

T
C

(T-2) - sin Kn (T-2-1-c))]

(1--2- TC) - sin Kn (4- 1-))]

(_'-4- _'c) + sin Kn (4-T))]

(sinKn (l"-4-l" C))]

(3-114)

(b) Sinusoidal Pressure Form c <- 1

For this transient pressure form the expressions obtained for A (lr)
n

1
become unbounded when n =-_-. Because of this circumstance, the function An(1-) was

1 1 1
evaluated fortwocases, i.e., when n_ _-- and when n = 7 For n¢ _-

1-<1- <-I +E A (T) ='-_ l-c 2n 2
n n

1 +c<-r- < 2 A
n

2<-T- < 2 + A
n

2+g-<1--<3 A
n

(T)- _KK_n If- _2n 2 (sinKn

(T)-)kK 2 2 n
n I-_ n

_[ °'((T) = 2 2 sin K n
n 1-e n

l"-¢)- sinK n(2-1"))]

(2-'r+_) +sinK
n

(2- T +E) +sinK

(T- 2) + sink
n

(2 -l" ))]

n (r- 2))1

(_-_.-,))]
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And for n =-- (3-115)

I
0 -< 1"-< 4 ('r) = r cos _r 4 _" 4

i - - n 2k cos_--_ +(1--4) cos_r 4

1-<1--<1+4 An (1") =2"2-'_ 1"-4)cosTr (1"-4)4 (2 -1" ) cos Tr (2-1" ,

I

1 "_-4-< 1- -< 2 A (_')_ _"_ I(2- _" "_-4 )COS T_ (2-1--{- 4 ) jr. (2 _ _. ) COS _ r

B [( (2- 1" +4)2-<1"-<2+4 A (1-) =_'-_ 2-1- +4) cos_r -(1"-2) cosTr

I n 4
-f_ [( + (1-- 2- 4) cosTr2+4-<1"-<3 A (1-) =-_ 1--2) cosTr (1--2)

_i n 4
3-<1--<3 +¢ A (1-) =_-- 1"- 2-4 ) cos 7r (1"- 2-4 ) (4-1-) cos'tr

I n 4

( (4 - l" ) (4 - 1"3+4_ T-< 4 A (1-)=_ 4-1-) cos _ -- + (4-I- +4) cos 7/"

i n 4 4

i n 2k 4-1- +4)cosTr E n 0-<1--<4

(2 4-1- )]

(1"-
2)]

(1"- 2 -4 )]

J4

(2 _-1" )3

+4)]

(3-116)
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(2) Clamped - Clamped Supports

! (a) Ramp Pressure Form r _<1
C

o_.,_ A,., B2_ [( )c n _ 2r coShKn%r +cOSKnr-2
n c

2k r
n c

I + ( c°S K I_ - e°S K(%r-n n Tc ))

,

1St_< 1 + r
e

1

1

1

l

-a n (sinK rn -sinKn(r-rc)l +2Knanrc]

A ( r ) I

n
2AK

n

_2 r 112cOshKn-cOshKn(r-rc)-cOshKn(2-T))

e

1 +r <r£2 A
C n

[

+ x{2c°sK - cosK (r- rc ).- cosK (2-r)_]n n n

_ (2 _h K_ -si_ (_-- _-2-s_ _:_(2- _-))

-(ln (2 sinKn-SinKn (r-re)-sinKn(2-v))

+2K (Z r ]
n n eJ

T
n c

i

I

1
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+ (cosK (2-r+n rc )- cosK (2-r))n

-an (sinhK (2-r +rc)- sinhK (2-r))n n

-(I n (sinKn.(2- r +re)- sinKn (2-r))

+2K %r _ [
n c n J
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2<_r_<2+r A (r) =
C H

2+r _<r<_3 A (r) -
C n

I(coshK (2_T +rc)_Cosh K2),K 2 n n
T

n c

+ (cOSKn(2-T +TC) - cOSKn (T- 2))

-0rn (sinhKn(2-r +rc)- sinhZn(r- 2))

-_ n IsinKn (2-I" +I"c) - sinKn (I"- 2))
"=I

- 2 KnU n (2r - 4 + r c)|j

(r- 2))

_ I(coshK (r-2)-coshK (r-2-r)2kK 2T n n c )
n c

+ (cos Kn(r-2)-cOSKn(r-2-rc)1

-Un(SinhK (r-2)-s_uhK(r-2-rn n c)l

-el n (sinKn(r - 2)- sinKn(r - 2-T c))

+2K Cl r 1n n c

3-_r-_3+r A (r) =
C n

3+r __r_<4 A (r)-
c n
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2_kK _2 r I/c°shK (T-2-rc)+c°shKn n

n c

(4-r)- 2 coshKn>

+ (cos
%

K (r - 2-rc )_ +cosK (4-r)- 2 cos n]K_n n

sinhKn (r- 2-rc) + sinhKn(4-r )- 2 sinhKn_/

r- 2-r c) +sinK (4-r)- 2 sinK 1}n n
-a ./..i. z (

"1

-2K _ r |
n n c J

- B [(co_hK2_kK 2r n
n c

(4-r +r c)- coshKn (4-r))

+ (cOSKn(4-r + r c) - COS (4 -r ))

-an (sinhKn(4-r +rc)- sinhKn(4-r ))

63



!

I

!

i!
I
!

!

Iiii
t

!
!

!
I

4-< T-< 4 +r
c

-n
sink (4-r + r c)- sinkn n n

3
• +2K cl r /

n n cJ

A (r) = -f_ [(coshK (4-r +rc ) + cosK
n 2kK 2r n n

n c

(4-r + re)-2 )

-an I sinhKn(4-r+re) +sinKn(4-r+rc))

+2K a r ] +A (r) In n c n " 0_<r_< r

(3-117)

(b) Sinusoidal Pressure Form e <_ 1

As was the situation for the case of simple-simple supports, there are

i_r Kn _ W _ W"two sets of functions required for A (r), i.e., for K =-_- and -_-. For K = --n n n

we have

0<r<E
-,Sez^_ [c eTrr 7rr 1"T 7rrA n (r) =_ os--- cosh-- +--sir* --E E E

(2 sin___ _ sinh 7rT 7rr 7rT )]-{2n E - E cos E

_'[ 5_ __ __E<r<__ 1 An(r} :2--X-_ cosh +cosh W" (r-E.e)- Z/rE sin ?rrE

,r(r -_ ) 7r(r-_)
+ sin

E E

(sinh 7rT + sinh _ ( r- E ) + 7r__/rcos. 7rrcl
n k _ _ _ E

vr (r-_)
+ cos

E

f_¢ [. _(r- 1)
1<_r<1 + E A (r) = [_cos coshTr +cosh 7r (r-E)- n 2),7r E _ E

! coshVr (2-r) _ 27r cos 7/" (r- 1) sinTrm

E E E E

! sin
_(r-e )

E

Report No. 2286-950002
64

!



!

!

i

|

I

I
I

!I

!
I
I
I
I

_(2 -I" )
+ sin

E
(2-T)_a (2cos .i (r- 1) sinh vr
e n x _ E

(v -_ )
sinh%

E

- 2 .i .i(T - I) .i- sinh _ (2 r_) +--cos cos
E E E E

v(r-E)
COS -

I _ E E

[l+E<r<-2 Anlr)=_ _ cosh .i(2-r +_)- i

I _ _(2- _ + E) sin .i(2-r

E E

.i(2-1-) cos .i(2-1-) _!
JJE

.i (2 - r )
cosh%

E

+E) .i (2 - 1- )sin .i (2 - 1- )
E

-5 sinh .i (2- 1- + E )n E

.i (2 -r )sinh+
E

2_<1-_<2 +E

+
.i(2 - r +E)

cos
E

cos "if(2 _-I") )1

A (1-) - _Y,7 _o._

.i(2 - l" +E ) .i (2 -1- )
+

E E

.i(1- - 2) + cosh.i (2 - 1- +E ) _ cosh.i (2 -1- )
E E E

.i(2 - 1- +_) sin .i (2-1" +E) _ .i (l"- 2) sin .i ( 1"- 2)
E E E

-c/ sinh .i(2-1" +E)n
- sinh .i (1"- 2)

E

2 +E_<1- _< 3

+ COS
.i(2- 1" +E)

E

f_E [c .i ( 1-- 2)A (1") - oshn 2kTr E
+ cosh

.i(1"- 2-¢ )
E

.i(l" - 2) sin.i(1" - 2) .i(1-- 2-E ) sin
E E E

V(1" - 2 -E )

E

sinh .i ( 1"- 2)n E
sinh.i ( 1"- 2 -E )+

E

+
.i (l" - 2) .i (1" - 2)

cos + .i(1"- 2 -E )cos
E E E

,"1
"if(r- 2-_ )11

-jj
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3_<'r__3 +E

3+E(_T_<4

4_<r<4 +E

o f-

P_ 12 T(T-3) ___
A n (r) - _ L- cos _ cosh • + cosh

- cosh 7r (4- r ) 2Tr cos 7r (r-3) sin 7r
E E E E

(r - 2 -e )

T(r- 2-E) sin 7r( r- 2-E ) +Tr (4-r)
E E E

E

n (2 cos

T (4 - r )
sin

/r (r - 3) sinh w- + sinh/r(r - 2 -E )
E E E

- 27r 7r(r- 3) 7r-sinhT (4 r) +--cos cos--
E E E E

7r(r-2-_ ) 7r(4-r) 7r(4-r))]_rlr- 2- E) c°s E+ COS
E E

--_E [ 7r(4-r +_)+cosh'tr(4-r)A n (r) = _ cosh E E

_r(4- r +E) sinTr(4-r +E)_ 7f (4-r)
E E E

Tr (4 -r )
sin

[sinhTr(4-r +E) + sinhTr(4-r )I

n _ _ E

,2
Ir (4- r +•) _(4-r +E ) _(4-r) 7r(4-r) |l

+ ¢_ COS _ + • COS vj

-_ [ 7r(4-r) 7r(4-r+E) _(4-r +E)

A (r) - [cos +cosh -n 2)kTr ¢ ¢ E

7r(4- r +_ )
sin

[2 sinTr(4-r) + sinhTr(4- r +E)
n _ E 6

+ +A (r)
E n

0_< r_<E

(3-118)

And for
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O-<r < E

E< r< 1

l-_<v_<l + E

A
n )_ 2+K 2 2 cos--- coshK _')E E n

n

- _ sin sinh - - -- cos
n --_- 2 2 2 E

7r -K E
n

-c°sKn1-)-a n _(KnE sin 7rr-sinKnr)/l

An('l_)= "-'_- 2 +K 2E 2 n
n

-a n (sinhKnT +sinhKn(T-E )))

+ cosh K
n

cosK v+cosK n(r-E
71"2 -K E n

n

-a n(sinKn'r +sinKn(T-_)))i

A (r) =-_ 7r_ 7fir-l)
n 2+K 2 E2 2COS coshKE n

n

+coshKn (1--e )- coshKn(2-1-))

-a n( 2c°sTr (r-l)sinhKE n+sinhKn('t'-E)

- sinhK (2-z" - 2 cos cosK
n 2 2 2 E n

7r -K
n

+cosK (r -E)- cosK (2-1")_ -a (2cos 7r(1-- 1)
n n ] n k E

+sinKn(r-_) - sin Kn (2 -l" )))]

sin K
n
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:-.(c
i i I+E-<T<2 An(r)= _r2+Kn2 E2 oshKn(2-1- +E)+coshK n

|
n n "!/

n

+E) +cosK (2 -1- )
n

- _tn (sin Kn (2 -1- +e)+sinKn(2-T))_]

i 2_<1-_<2+E An (1-) = --_ +K 2 E2 cos
n

•r( 1-- 2)
+coshK (2-1- +_)

E n

i
18

-coshK (1-- 2)- O (sinhK (2-1-
n n n

,rE /2 vr(r - 2)_r2 K 2 _2 cos +cosKE n

n

- cos Kn (r - 2) -a n (sinK n (2-r

!

!

!

2 +E -<1---< 3
A n (l") - 2+K'2 c2 coshK n

n

- (2 (sinhK (1-- 2) + sinhK
n i) n

7r2 K 2 _2 cosK_ n

n

(2 -1" )

+c)-sinhKn(tr-2) 1

(2-1- +C)

+E)-sinKn(1--2)t]

(1-- 2) +coshK (r- 2-E )
n

(1-- 2) + cosK (1- - 2-_ )
n

(sin ._" 2) +sinK- a n Kn( - n
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3_<r_ 3+E A
n (r) = 2+K 2 2 cos T(r - 3) coshKE n

n

!

|

+coshK (r- 2-_ )- coshK (4-r)
n n

! 7F( T 3)
- Q 12 cos sinhK +sinhK (r- 2-c )n E n n

(n -T2 _ "2 E2 2 cos • n

n

I / ( 3)T I

+ cos K n (r- 2-c ) - cosK (4-r)-a _[2cos"n n E

sin K n n

3+ _-<r_4 A n (v) = 2+Kn 2 _2

- a mhK (4-,-
n n

,!

iiI _

+sink (r-2-c)- sinKn (4-r))l ]

7r 2- K 2 2 os
n

K (4-r +_) +coshK (4-r)
n n

+ c) + sinh K n (4-r )))

K (4-r +C)+cosK (4-r)
n n

4<-r<4+E A (r) = vr__E, vr(4-r) + coshK (4-r +E)
- n 2 E 2 cos '" E n

n

-a _ sin + sinhK (4- r +c)n • n

|

!II

vr_ ( w-(4-r) + cosK (4 -1" +_)
• r2- K 2 2 cos E n

n

- KnE . ))]- a n(---_sinW'(4_-r) + sinKn (4-1- +c)
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The above expressions for A (T) are written for the number of traverses
n

required to completely represent the history of transient pressures. It should be noted

that the last term in the last expression is a repeat of the first expression for the first

time interval. Thus, the expressions for A (T) are employed cyclically as time pro-n

gresses.

2. Adaptation to Automatic Computation

As explained in Section H, the transient pressure forms under consideration

continually traverse the cylinder from one end to the other. Algebraic expressions which

yield the deflections and stresses at any time in the sequence of transient pressure

traverses can be derived by the procedure employed for the sample solutions of Section

IH-C. However, depending on the type of transient pressure, the size and complexity of

the algebraic expressions for the response solution increases with each traverse and

soon becomes unwieldy. After examination of the various techniques that could be em-

ployed to overcome this problem, it was thought appropriate to adopt a conventional

numerical method of solution which could be readily programmed for use on the digital

computer. All the aualytics pertinent to such a method of solution were presented in

the previous section.

The solution of Equation 3-109 canbe efficiently obtained by the predictor

corrector technique of numerical integration which is explained in Reference 3-5.

This technique was used as the basis for a general purpose computer program

which was programmed to give results for the ramp and sinusoidal transient pressure

forms. As explained above, in the limit, these cases reduce respectively to the step

and spike pressure types. The general purpose program is presented, together with

illustrative problems as a users manual in Volume H of this report.

3. Summary of Solutions

As stated previously, obtaining expressions for the response of cylinders

subjected to many traverses of the pressure transient is prohibitive and consequently

it is best to obtain design data by numerical integration of the separated differential

equation, Equation 3-109. However, under certain circumstances only the first traverse
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of the pressure transient is required. In addition, such soluti_s which are less

costly to run on digital equipment, could be used to check the numerically obtained

solution and to generate design data, in spite of its limitation.

Design data presented in this document are valid for only the first traverse

of the pressure transient under consideration. Expressions used to compute the data

are summarized in this section. However, where it is convenient, the dynamic solu-

tions were extended beyond the first traverse.

Since the solution is given by Equation 3-108, only expressions for the time

dependent function F (r) need be documented. In general, the expression for F (r)
u n

for all cases treated will be of the form

Pin

where an' Ain' B. and F (r) depend on the form of the pressure transient under
m Pin

consideration and are summarized below. The subscript "i" is introduced to identify the

time interval where necessary. The damped nondimensional natural frequency _n is given by

2 = _ 2 _ _ 2 (3-121)
n n

(a) Spike Pressure, Simple-Simple Edge Conditions 0 <- r

F (r) = C
Pn n

n

A
n

B
n

C
n

sinn_rr+D cosn_rr
n

B t/2

22)2 ]- n 71" + (2 n-rr_)2

= 2nTr_

nTr [ (_n2 ]_n 2G2 211"2)

_2 22- -n "/r
n

D = -2nTr
n

(3-122)
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Step Pressure, Simple-Simple Edge Conditions

F (r) =C +D. cosnTrr +E sinnTrr ._ =
Pin in m in ' n n 7r

(b)

(3-123)

1 1

Aln = -(Cln + Dln}; Bln -_n(_Aln - nTr Eln); Cln = _-_ 2n

-(2 2 2 2)-n 7r
n -2a nTr

Dln=(,_,-_, 2 2 2)2 - 2; Eln= 2 2 2)2- n 71" + (2anTr) (_ - n + (2_nTr) 2
n n

a2n Gln - G2n sin 2_ n G2n cos 2_ n - aln Gln

A2_: _2nco__- a,__ _; _n a2nco_2_- _n _ 2_

0--_'-<2, i = 1

aln=-_c°S2_n -_nsin2_n; a2n=-_sin2_n +_ne°s2_n

(3-124)

Gln 2 (Cln+Dln)t_ 2_ 2_ + sin2_= + Aln cos n Bln n

2 -<_'-<4,i=2

= E e 2a
G2n 2nTr in _ +Alnaln+ Blna2n

(c)

C2n =-Cln; D2n =-Dln; E2n =-Eln

Ramp Pressure, Simple-Simple Edge Conditions

F (v)=C. +D. r +E. cosnTr_-+G, siunyrr ;_
Pin m m m m n - nTr_,

O--<T--< Tc, i = 1

c n c n 1

2_/Vc nTrVc (_'_n 2 - n27r2)

Eln - (_-_ 2 2 _r2) 2 1_)2; Gln= (_ 2 2 2)2- n + _nTr_,. - n "rr + (nTr2a) 2
n n

1
n 7r Gln)

t Aln = -Cln - Eln; Bln - _n ( _" Aln - Dln

2a 1

I Cln--r _-_ 4 ; Dln- r _'_ 2
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r < v_<l, i = 2
C

C la 2-C 2 sin_n'rc C 2cos_n rc- Clal

A2n-_2 R_ _ _1 _mlln re' B2n _2 _o_rt re - _1_i_COS - n "e

1

C2n- _,_/; D2n=0

E2n =

2 2 2) 1 2_
- sinnTr +--'_'c(l- cosnT Tc)-(_n n _ tort c c

_n 2 2 2)2- n + (2a n T) 2

1

nlrr (_2 2 25
c n -n 7r2) (1- cosn_rTc)---_c sinnTr Vc

G2n -
_n 2 2 j)2- n + (2a n_r) 2

I al =._cOS_nTc_ _nSink Tc;a2=__sin_n -rc+_nCOS _ Tc

:1 b 1 = Cln +Dlnr + cosnw'r +GlnsiUnlr Tc Eln c c

b 2 = C2n+D2n Tc +E2nc°snw'rc +G2nsinnTTc

I

i_,ii

!

I

b 3

b 4

C1

C 2

(d)

= Dln Eln n 7r sin n 7r _'c + n vr Gln cos n-_r rc

: nWE2n sinner T - n'_rG2n cos n_rrC c

+ sin_ r+ bl) + Aln cos _n Tc Bln n c

a_
= @ (b3+b 4) +a 1Aln+a 2Bln

Sinusoidal Pressure, Simple--Simple Edge Conditions

TT
F (T) =C. sinn'W"r +D. cosnTr + E. sin_ + G.
Pin m m in m
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O-<'t'-< _, i=l

Aln :-Dln -Gln, _Aln - nrr Cln - --

7/"

E in)

(_ 2 -n27r 2)
n =

Cln = ( &,_2 2 2)2 Dln- n + 2UnTr) 2'
n

2

I _ -n c (_n 2 -T--_'-}(2

Eln = 2 2 2 'Gln

-2,U nw"

(_-_2 _ n2 2)2 + (25nTr)2
n

2 t_nTr

22

1

!
I

¢-<r -< 1, i = 2

a 2 C 1 - C 2 sin_ n_

A2n=a 2cos_n _ - a 1 sin_n E

C 2cos_E - alC 1II

B2n = a 2 cos_'_nE -a 1 S_n_

+(£_2
n

C2n =
(_n 2 2 w.U)2 2- n + (nTr2{l)

- n2w -2) (1 + cos n_r_) - nTr2 (_ sin n/re

a 1

b 1

b 3

C 1

C2

-(a 2 _ n 22) sin n-tr E- (1 + cos nv¢) 2u n_r

D2n = (_n 2 n 2 _r 2) 2 - 2- + (nlr2 a)

E-fi sin_ • ; a 2 -a sinh E +h cosfi E= -aoo ,0, ,, n = n =

= Cln sin uTr c +Dln cos nTrc - (]in; b 2 = C2n sin n_rE + D2n

= nTrClnCOS nTrE- nlrDlnSinnTrE -_Eln; b 4 =n_rC2n

,{b1- b2_, +AlnCOS_, _ + sinn Bln nO E

QE

= _ (b 3-b4) +a 1 Aln+a 2 Bln)

COS I]W'E

cos n_rE - D2n n_r sin nTrE
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(e) Spike Pressure, Fixed-Fixed Edge Conditions

B 1/2 (3-126)
a =

n 2X

0-<t-<l, i= 1

F =ClnCOShKT + cosK r + sinhKr + sink rn Dln n Eln n Gln n

Pln 1

Aln=-(Cln+Dln )' Bln =-_n [aAln-(ElnKn+ GInK_]

(an 2 2)+2_K -( n Kn 2_ Kn a n+Kn nan _ 2_ 2)_

Cln (_n 2+Kn2) 2- (2G Kn) Vln= (_n 2-Kn2) 2+(2_ Kn)2

__- ¢_n (_n: +Kn2___)- 2aKn_ .n(_n 2- Kn2) - 2ink n

Eln (_n 2 + Kn2) 2 - (2_Kn)2 ' Gin = (_n2 - K2) 2 + (2a Kn)2

1-<r$- 2, i = 2

Fp2n = C2n cosh Kn (2- r ) + D2n cos Kn (2 - r ) + E2n sinh Kn (2-r)

+ G2n sin Kn (2 -r )

Cla 2 - C 2 sin_ n C 2 cos_ n- Cla 1

A2n a 2cos_ n-a 1 sin_" n' B2n a 2cos_'_ n a lc0s_ n

(_2 2)_ +K n +2_ Kna+K 2Q K _(_._ 2 2)

n :22 nan = -n_ _ __n
= -- ----- ' D2n 2 K"-2)2 (2a Kn )2C2n (_'_n2 + n ) - (2aKn)2 (_n n +

2
2) _ _ + 2aK-On(_n +K +2 K a n(_'_n 2 Kn 2)n n n

E2n=(_._ 2+K 2)2_ (2a Kn)2 ' G2n= (,_n 2.Kn2) 2+ (25 K )2
n n n

al -a cosh - _n sin_n, : -_ sinhn +_-" cos_= n a2n n "n

i
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+ sinK + coshK + cosK
bl = E1 nsinhK n Gln n C1n n Dln n

+ cos K

+G2 nsinK +C2 ncoshK n D2n n
b2 = E2 nsinhK n n

+ C1 n sinh K - Dln sin K n)

b3 = Kn (E1nCOShK n +Gln coS K n n

+ G2 n cos K n + C2n sinh K n - Dzn sin K n)
b4 = Kn (E2n cosh K n

__ cos2 ÷ s_a +(-h÷h)e_
C 1 Aln n Bln n

+ b 3) + a I + a 2 Bln)
C 2 = # (b 4 Aln

(t5 Step Pressure, Fixed-Fixed Edge Supports

0<_.r__I, i = 1

F = Cln
Pln

T +
sinh K n Dln

Aln = -(Eln + Gin + l-Iln),

Cln

_ x-'It II It
_ 2 '

2 +Z_)- 2&_ ,

E1n (_'Ln +

-r+
sin K n Eln

T + cosK T + Hln
cosh K n Gln n

I -Dln K n)

Bln _ _-n (_ Aln - Cln Kn

r_ 2 Kn 2)_ an2aK
-(, 11 - It

Vln = (,_'_2n -Kn2)2 .(2_Kn )2

Gln =

_ 2 K2)+2_ zn 2a-a (,it,_- n _ = ___._n
-n n _2-- 2' Hln _'l 2

2 _ + 2aK)
ifIn - _;n) ( n n

IS'r <-2, i = 2

smh K
F = C2n n

P2n

(2 -r ) + D2n sin Kn (2 -r ) _-E2n
cosh K n

(2 - T) + G2n cos K n (2 -r ) +
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Cla 2 - C 2 sin_ n C 2 cos_ n - C1 a 1

A2n a 2 cos An-a 1 sin_ n' B2n a 2 cos_'_n-a 1 sin_
- H

C2n

(b_,2+K 2)-a 2_K
n 11 n H

2)2_- + z. - _2_ K_2'

-(,_n 2- Kn2) +o 2_K
n n

V2n= (_n 2-Kn)22 + (2a K) 2

-a n(_n 2 +Kn2) +2aKn -an_n2-Kn2 )_ 2aK n

E2n _ 2 K 22 (2a K) 2 ' G2n 2 2 H2n =Hln( n + n ) - (_n 2- Kn ) + (2a Kn)2'

a 1 :-acos_ -_ sin_n, a2:-a sin_ +_ cos_n n n n n

b I = ClnSinhK + sinK + coshK + cosK +n Dln n Eln n Gln n Hln

b2 = C^ sinhK + sinK + coshK + cosK +zn n D2n n E2n n G2n n H2n

b 3 = K (ClnCOShK + cosK + sinhK - sinn n Dln n Eln n Gln Kn)

b4 = Kn(C2nCOShKn +D2nc°sKn +E2nsinhKn- G2nsinK n)

C 1 = AlnCOS_ + sin_ + O _n Bln n (bl - b2)

C 2 9 _t + b 3) a 1 a 2= (b 4 + Aln + Bln

(g) Ramp Pressure, Fixed-Fixed Edge Supports

F = C +DInT+E. coshK T + G. sinhK _" +H. coshK _" +I. sinK T
Pin in m n m n m n m n

n

(3-128)

2
kK v

n e

0__ "c<_.Tc, i = 1

1

A1 n = -(Cln + Eln + Hln) Bln = _n (_ Aln -Dln - KnGln - KnIln)

2Knan

Dln _, 2

_ 1

=_(2+ 2aDln)
Cln _ 2

n
n
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(_ 2 +K 2) + a 2"_K
n, n nn n

,rc_T< 1, i = 2

Cla 2 - C 2 sin_'_n %'c _

:',I A2n ---a2 cos _u Irc- a l sin_ n I"c

R

W

!
|

( n -Kn) +(2h

C 2 cos_'_ n m"c - Cla 1 _

B2n=a 2cOs_n _'c- alsin_n IrC

D2 n 0

2 +K 2)_ d12_K
d2 (_'_n n 11_

G2n =-- 2 2)2

2_K 2) +d32_ K

(¢_2_n - K 2)_ d42_K d4(_'_u n n_
d3 n n 2

al (__ .cOS_n lrc _h n sin_'_n m-c) , a 2 : (-¢_ sin_ n Vc +_n c°s_'_n T'c)

+ Iln sin Knl"+ cos Knm"
+ E1 ncoshK m" +GlnSinhK urn"c Hln c

b 1 = Cln+Dln Tc n c

1" + sin Kn T
+G2 nsinhK nT + H2nC°SK n c I2n c

b2 _ C2 n+ E2 ncoshK nT c c

% _ D1_ + K (EI_ _h K _ + C_. _osh _ Tc H_. _ _. _ + h_ oo_Z_ _
_. + cos K n _'c )

b4 = Kn(E2nsinhK n_c +G2nc°shK n_'c- H2nsinK n c I2n

+ Aln c BIn n c
C1 =(b 1-b2)@ n

c
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C2 = (b 3 b4 )_a_'c a2- + alAln + Bln

I d1 = 1-coshK T" - _ sinhK l"c,
" n C n n

11 d3 = 1-c°sK T - a sinK 1"n c n n c

d 2 =-a + a coshK _" + sinhK _"n n n c n c

d4 =-a + a cosK 1" -sinK rn n n c n c

I
I
|
!

III

(h) Sinusoidal Pressure, Fixed-Fixed Edge Supports

Fpin= Cin cos _IrT + Din sin V_ + Ein cos Kn T + Gin sin Kn_r + Hin cosh Kn _"+ I.m

sinh K r (3-129)
n

a
n

_ITE

]k(_"2 +K 2 • 2)
n

0_;I"<c, i=l

1 Ir _ _ ilnKn)
Aln = - (Cln + Eln + Hln) Bln = _n (_ Aln- _'-Dln KnGln

2 [ 2 2 K¢

(bn-l) (_n 2 -c_----+2a anKn) (bn-l) Ll-(_'_n -_)aEz n-_- + 2_

Cln = (_-_2_ .it2)2+ (21_Ir)2 Dln= (,_n2 ____)2 + (2_%)2
n c2 c

I! [ ] [n n)+2a K O _) a (_n 2 K 2)-2a
= n n n n n

Eln 2 K 2)2 Kn)2 Gln= - K + (2a- + (2O (_n2 2)2 Kn )2(ftn n n

+K +2aK a -a ((_n n n n n

(_'_n2 K 2.2 (2_ Kn )2 Iln = 1_,_2

2 2 2
w" +K E

n

n _2 _ K 2 e2
n

+K 2)-2_K
n n

+ K 2)2 _ (2_ Kn )2
n
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• --<T--(I,i=2

_ a 2C I- C 2 sin_nc C 2cos_ E - C 1 a1
-- 9

A2n a2cos_n E - aI sin_'_n_ B2n a2cos_:_ - aI sin_n C C2n

2 2)
d3 ( n -Kn - d42_ K n

E2n= _._ 2 K 2 2 (2_ Kn) 2( n - n) +

G2n =

d 4(_n 2- K 2) +d3 2_ Kll 11

(_n 2_ Kn 2)2 + (2a%)2

dl (_n 2 2) __ 2 2)+K - d 2 2_ K d2 (_n +K - d I 20 K
11 II II II

H2n (,_n 2 + Kn2) 2 (2_Ku) 2 I2n (_,n 2 + Kn2) 2 (20 Kn)

= D2n

I C I (bI- b2)o a_ +AlnCOS_ n {+ BlnSin_n _

o

I C 2 = (b 3- b4)@ +a 1 Aln+a 2 Bln

I
I
I
I

b 1

b 2

b 3

b 4

d 1

d 3

= -Cln+ Eln cos Kn ¢ + Gln sinKnC + HlnCOShKn { +IlnSinhKn _

= E2ncOSKn _ + G2n sinKnE + H2nCOShKn _ +I2n sinhKnE

= -_Dln +K sinK c + cosK E + sinhK _ + coshK c)n (-Eln n Gln n Hln n Iln n

= K sinK E + cos K E + sinhKn (-E2n n G2n n H2n n + I2nCOShKnE)

= 1 +coshK nE +Qn sinh Kn _' d2 = sinhKn _ - Q n- {/nc°shKn _

= -_) (1 +cosK E +a sinK E) d 4 =-bn (sinK _ -e - q cosK {)n II rl rl ' Ii II Ii n

=0
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IV. SUMMARY OF RESULTS

A. TYPICAL DYNAMICAL RESIK)NSE SOLUTIONS

The elastic dynamic response solutions presented in this report will yield the com-

plete history of deflection profiles and stress fields as a function of the design parameters •

discussed in Section HI-D. Each set of design parameters represents a specific time

dependent design situation and consequently, as this study has clearly indicated, must be

investigated in detail if a thorough understanding and analysis of the dynamic response of

the shell is to be obtained. Such an exhaustive investigation, although feasible for a par-

ticular design situation_is not feasible for the range of values of the design parameters

discussed in Section IH-D. Hence, it is the intent of this section to present only sufficient

detail which reveals the significant characteristics of the response of cylinders to

transient pressures. This information is then used as the basis for the method adopted

for the development of design charts.

1. Infinite Length Shell

Typical deflection profiles and bending moment distributions are presented

for the shell of infinite length subjected to a traveling pressure spike in Figures IV-1

through IV-4. Damping was neglected ( a = 0). Two distinct deflection profiles are ob-

tained depending on whether the speed parameter, X , is greater or less than one. When

X < 1 the traveling deflection profile appears as a damped sinusoid that is symmetrical

with respect to _ = 0 as shown in Figure IV-1. The maximum deflection occurs at

= 0 and increases with an increase in X

When X > 1, the deflection profile is sinusoidal as shown in Figure IV-2.

Deflections and wave lengths behind the traveling spike are larger than those in front of

the spike. In addition, as a result of the oscillatory character of the deflection curve

about w = 0, maximum negative and positive deflections of equal magnitude are experi-

enced. The maximum deflections decrease with an increase in X . As X approaches

one from either direction a critical condition is approached which is characterized by

unbounded deflections.
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For k < 1, the maximum bending moment is located at _ = 0 and increases

with an increase in k as shown in Figure IV-3. The maximum bending moment for

k > 1 Occurs in front of the pressure spike and decreases with an increase in )_ as

shown in Figure IV-4.

Plots of the maximum deflection, Wmax,-- and the maximum bending moment,

Mxmax as a function of the speed parameter, )k , are shown in Figures IV-5 and IV-6.

The curves in these figures will yield the maximum hoop and bending stresses (see Equation

3-106, 3-107). For k < 1, the maximum hoop and bending stresses act at the same point,

= 0, and therefore this data is sufficient for design purposes. However, for _ > 1,

the maximum deflection does not occur at the same location as the maximum bending

stress. Since for design purposes, a complete knowledge of the state of stress at a point

is desirable, the deflections and bending moments present at the respective maximum

bending moment and deflection locations were determined and presented in Figures IV-7

and IV- 8.

Typical deflection profiles for the step pressure case are shown in Figure IV-9

(see Reference3.3). It should be noted that the deflection profile is in the shape of waves

which oscillate aboutw=0 for _ > l and oscillate about w = lfor_ < 1. For_ < 1

a point possessing both the maximum deflection and bending stress occurs behind the

pressure wave front. For k > 1, the maximum deflection occurs behind the pressure

wave front whereas maximum bending moments occur at and in front of the pressure

wave front.

Maximum deflections and bending stresses for the step pressure are given in

Figures IV-10 and IV-11. It is significant to note that for k > 1, the maximum deflection

never decreases below w = 2.
max

Solutions obtained for the infinite shell correspond to the steady-state solution

and their applicability to practical shells of finite length must be ascertained. The prac-

tical significance of solutions for the infinitely long shell is discussed in Section IV-B.
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2. Finite Length Duct

a. Convergence of Solution

Since the elastic dynamic response solutions for the finite length cylinders

are in the form of an infinite series, it is necessary to determine the number of terms,

N, required for convergence of the series solution for each combination of the parameters

I

I
I

I
1

Determination of the number of terms in the series solution required to

yield adequate accuracy was accomplished with the aid of curves such as shown in Fig-

ures IV-12 through IV-16. These curves, which reveal the convergence characteristics

of the series solutions, give the variations of the radial deflection, w, and bending moment,

Mx, as a function of the total number of terms, N, considered in the series solution. The

specific curves shown were drawn for the spike transient pressure case which was studied

in some detail because it is believed to represent the most severe situation from a con-

vergence standpoint.

Figures IV-12 through IV-15 were drawn for X = 2, values of _ from

102 to 105, time r = 0.5, a = 0, and location _ = 0.5. The curves in Figure IV-16

I were obtained for_ = =4, r= 0.5, a =0, and =0.5. It is evident from105 , X

a study of these results that the number of terms, N, required to attain convergence in-

I creases with increase in _ or . In addition, all of these curves exhibit two peaks

which occur before the series converges. Hence, a knowledge of the location of these

peaks will give a lower bound to the number of terms which must be taken in the series

solution and is discussed below.

I

I

I

I

The location of the peaks in the convergence curves discussed above is

related to the resonance characteristics of the shell.

tion (see Equation (3-71))

k 2 v - e0 = 0 (4-1)
n n

At resonance, we have the condi-
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Using Equation 3-57 to eliminate the natural frequency

• 4/n m_ DR 2 kn "_

Introduction of the nondimensional parameters yields

n' results in

(4-2)

2 2X_
+ 1 =

K 2
n K

n

(4-3)

Since as n increases, K for the clamped support condition approaches n 7r which is equaln

to K for the simple support condition, the above expression can be in general written asn

n 2 2
2 ), = 2 2 + rf (4-4)

n zr /_

The relationship between
n2 _r2

and X as given by this expression is

shown in Figure IV-17. Note that a resonance condition for X < 1 does not exist but a

resonance condition exists for each value of n which is independent of the form of the

pressure transient. Thus, for a given mode, n, a combination of _ and X values can

be determined which will excite that mode. If on the other hand a combination of _ and

X Values are given, it is unlikely that resonance will occur since n is an integer. How-

ever, for a given combination of _ and _X values, two values of n can be obtained from

Figure IV-17 or Equation 4-4 which are not, in general, integers. It appears that the

values of n so determined locate the vicinity of the peak values in the convergence plots

and the total number of terms, N, taken in the series solution must exceed these com-

puted values of n.

As an aid in determining the value of n which represents a lower bound for N,

Figure IV-18 was prepared. This figure was computed from Equation 4-4 and gives the

larger critical harmonic number, n as a function of _ and k . The critical harmonic
cr

number is defined as the mode number which gives resonance for a given combination of

and X . The tick marks on the horizontal axis in Figures IV-12 through IV-r6 indicate

the nearest critical harmonic number for the specified combinations of _ and k .
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For _, < 1 t_,_ _°,._°_ solution obfo_ined for the spike pressure and sim-

ple supports converges in a manner as shown in Figure IV-19. The variation of deflec-

tion and bending moment with N for various values of _ are indicated in this figure.

The speed parameter was taken to be very small, i.e., ), = 0.001, so that the results

could be compared with the exact solution given in Reference 4-1 for an infinite shell

subjected to a static ring load. These results indicate that the series solution is correct

for small values of k Evidently a relatively large number of terms must be taken in

the series solution to obtain accurate values for the bending moment.

Results of this study of convergence of the series solution indicates that

(as a consequence of the uniformity of the convergence characteristics above a known value

of N), development of a convergence criterion for use in a computer program is possible.

(see Vol. ID. However, for completeness, the convergence characteristics of the remaining

solutions should be studies further.

b. Deflection Profiles and Stress Distributions

There is no simple, analytical procedure by which the maximum deflec-

tion or bending moment can be determined from the series solutions presented in this

report. Consequently, such a determination must be obtained by an examination of com-

puted time dependent deflection profiles and stress distributions. Typical data of this

type are presented here.

Typical deflection profiles are presented for the step pressure with

k = 2 and _ = 104 at various times in Figure IV-20. Dynamic response results as

illustrated in these figures indicate that with the exception of regions near the simply

supported cylinder edges, practically all points of the duct experience comparable stress

levels during the course of travel of the step pressure. It is of importance to note that

the deflection profiles for r = 0.2 and 0.5 are similar to that given, for the infinite

length shell subjected to a step pressure, in Figure IV-9.

The variation with time of the deflection and bending moment at _ = 0.5

for the above Case is shown in Figure IV-21. Data of this type are used to obtain design

charts discussed in the next section.
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A typical deflection profile for the ramp transient pressure at time

11"= 0.5 is shown in Figure 1V-22, and typical deflection and bending moment variations

with time at location _ = 0.5 are shown in Figure IV-23. These dynamic response

results for the cylinder when subjected to a traveling ramp pressure are for a non-

dimensional _-_lve closure time at l"c = 0.2 and design parameter value of k = 2, _ = 104,

= 0. The design parameters selected for the ramp pressure are the same used to

illustrate cylinder dynamic response to a step pressure presented in Figures IV-20

andlV-21.. A comparison of the above typical results obtained for the step and ramp

transient pressures reveals that a significant reduction in stress level occurs with

the introduction of a valve closure time. It should be noted that practically all points

of the duct will experience similar time dependent stress variations and consequently

are subject to failure by fatigue.

The history of deflection profiles obtained for the simply supported

shell of finite length subjected to a pressure spike is shown in Figures IV-24 through

IV-26. Results are shown for _ = 10 and various values of ). from 0.5 to 5. Two

traverses of the duct are considered. These figures clearly indicate the effects of

Shell edge supports on dynamic response of a relatively short duct.

Additional typical dynamic response curves are presented in Volume H

of this report.
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B* SIG_'IFICANCE OF SOLUTION FOR EqFE_qTE DUCT

I

I

I

I

Since in reality all ducts are of finite length, the question arises as to the practical

applicability of dynamic solutions obtained for the infinite duct. The closed form solution

derived for the infinite shell corresponds to a steady state solution whereas the series

solution for the shell of finite length is a more general solution which will yield both the

transient and steady state response of the duct. Consequently, it is logical to assume that,

if boundary effects were negligible, the response of relatively tong ducts is similar to that

determined for the infinite duct, i.e., for ducts greater than a certain length, the response

of the finite shell is approximately that of the infinite shell.

i

I

I
I
I

i

I

I
I

I
I

I
I

Comparison of results obtained for the shell of finite length with that for the inf.inite

shell indicate that the maximum stresses and deflections for the finite shell are similar

if not identical to that of the infinite shell. This observation is clearly indicated by the

design charts, presented in Section V. The design charts include both the results for the

infinite shell and finite length. Evidently in some ranges of the design parameter, the

difference in response is negligible as is the case for the spike pressure for X < 1 as

shown in Figure V-1. However, in general, the difference in response can be quite signifi-

cant as indicated for example in Figure V-l, for X > 1.

In order that the finite length shell be at all comparable to the infinite shell, the length

of the shell must be at least greater than the wave length of the deflection profile of the

infinite shell. The wave length as a function of the speed parameter is given in Reference

3-3.

If we let the wave length equal _w (inches), and, in consistencywith the length

parameter, define the non-dimensional wave length as

_w 2

Bw ; w W

where _ is the wave length given in Reference 3-2, then the wave length versus speed
w

parameter can be shown to be given by Figure IV-27. Th.is curve indicates for example

t_t if X = 1.5 then_ _ 100 and consequently in order that the finite length shell
w

solution be at all comparable to the infinite length shell, the length parameter of the finite

length shell must be greater than 100.
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In general, from this portion of the study it appears that solutions obtained for the

infinite duct can be used to a limited extent to approximate the response of relatively long

ducts. However, this aspect of the subject requires additional study.

C. SIGNIFICANCE OF DAMPING

Although the dynamic response solutions presented in this report contain the effects

of viscous damping, there is no method available for predicting the magnitude of the

viscous damping coefficient required for a particular case. Consequently only the signifi-

cance of damping is investigated.

Typical deflection and bending moment dynamic response curves which include

damping for a step pressure are presented in Figures IV-28 and IV-29. These curves

are comparable with that of Figure IV-21 which does not include the effects of damping.

Comparison of the dynamic response curves in these three figures reveals that there is a

significantly large decrease in maximum stress levels when the damping parameter is

increased froma = 0 to a = 0.1, but the decrease in stress level when going from

a = 0.1 to a = 0.2 is small.

The influence of damping on the maximum deflection and bending stresses was

determined for the traveling spike load and the results indicate that damping effects can be

quite significant in reducing deflection and stress levels.

It is concluded from this portion of the study that damping can be quite significant

and should be investigated further.

I
I
I
i
I

D. SIGNIFICANCE OF SHEAR AND ROTATORY INERTIA

The theory upon which the present study is based neglects the effects of local

shear deformations and rotatory inertia. To determine the significance of shear

deformations and rotatory inertia wi£h regard to the dynamic response of cylinders to

traveling transient pressures_ a solution to the basic shell equations which include the

effects of shear deformations and rotatory inertia was obtained and documented in

Reference 3-1.

Typical deflection and bending moment dynamic response curves were obtained

with the shear theory of Reference 3-1 for traveling step pressure and are compared in

Report No. 2286-950002 115
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Figures IV-30 and IV-31 with curves obtained with the theory presented in this report.

From an examination of this- comparison it is evident that for the design parameter

selected, there is little difference in the deflections (see Figure IV-30). r But, from an

examination of the bending moment results given in Figure 137-31 it appears that shear

deformation effects may be of significance. In general, from this portion of the study it

may be concluded that for the range of values of design parameter considered in this

report, shear and rotating inertia effects can be neglected without introducing significant

errors. This subject is discussed further in Section VI-B.

° .
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V. DESIGN DATA

A. METHOD USED TO DETERMINE MAXIMUM STRESSES:

Based on the dynamic response data discussed in Section IV, an approximate but

realistic approach to the development of design charts was followed. First based on the

convergence characteristics of the series solution, values of N were selected for each

combination of _ and k values.

Deflections and bending moments were then determined as a function of time at

three locations _ = 0.45, 0.50 and 0.55 such as shown in Figures IV-21 and IV-23 for

= 0.5. Maximum deflections and bending moments were then extracted from this

data and design charts prepared.

For cylinders with fixed-fixed boundary conditions, bending moments at both

supports were first determined as a function of time, the maximum value was then

extracted and separate design charts prepared.

B. PRESENTATION OF DESIGN CHARTS

Maximum deflections and bending moments are presented in Figures V-1 through

V-26. All the data used to prepare the design charts are summarized in tables which

follow the pertinent design charts. These tables also contain the corresponding deflections

and bending moments which occur at the points of maximum deflection and bending moment.

Also included in the tables are the number of terms, N, taken in the series solution used

to generate the design data.

For purposes of aiding in the rapid location of a desired design chart, the following

master table was prepared.
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MASTER TABLE

SUMMARY OF DESIGN CHARTS

max
a

W max

Case* Fig-ares Pages Figures Pages

Spike, S_.

Step, S.S.

Ramp, S,_.

V-l, 2

V-4

V-5

V-9, 10

V-13

V-14

V-15, 16

V-18, 19, 20

21, 22

124, 126

130

132

140, 141

149

151

153, 154

161, 162,

163, 164,

165

Sinus oidal, S.S.

Spike, F.F.

Step, F.F.

Ramp, F.F.

Sinusoidal F.F.

V-l, 3

V-4

V-6, 7, 8

V-11, 12

V-13

V-14, 23

V-17, 24

V-18, 19, 2O,

21, 22, 25, 26

124, 127

130

133, 134,

135

142, 143

149

151, 171

155, 173

161, 162,

163, 164,

165, 175,
176

i

!
I

= Simple-simple supports

--Fixed-fixed supports
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TABLE 26. STEP PRESSURE, FIXED SUPPORTS, o = 0,MAXIMUM BENDING MOMENT
AT THE SUPPORTS

0.50

0.75

1.25

2.00

3;00

4.00

5.00

6.00

102 N

L1943 3001
!

1.9230 3001

1.9991 25j

-1.3530 25]

1.4074 501

1.4867 501

1.4192 501

1.4753 50 I

103

1.1445 300

1.2698 300

-2.7049 70

1.2126 70

1.1720 80

1.2168 80

1.2635 80

1.2970 80

!

104 N

1.0310 300

1.5478 30O

-2.3791 100

1.0930 100

1.0797 110

1.0533 125

1.1038 150

1.1530 200

4x104 N

1.0147 500

1.0359 500

-2.0540 150

1.0714 250

1.0492 300

1.0533 300

1.0649 325

1.0713 350

I

I
]

105

0.9944

1.1420

-2.2433

1.0208

1.0784

1.0329

1.0470

1.0641

N

_500

500

200

35O

375

40O

425

45O

106 N

0.7664 500

0.9227 500

1.8270 700

0.9327 800

1.0063 900

0.9900 L000

0.9846 tl00

[200
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C. ILLUSTRATIVE APPLICATION OF DESIGN CHARTS

As an illustration of the application of the design charts and tables presented in

Section V-B, consideration is given to a simply supported circular cylinder subjected

to a step type pressure transient.

properties axe assumed.

R

h

The following cylinder dimensions and material

= radius = 10 inches

= wall thickness = 0.090 inches

= length = 450 inches

p = weight density = 0.29 lb/in. 3

E -- Youngls Modulus = 29..2 x 106 psi

y = Poissonts Ratio -- 0.3

The speed of the pressure transient front can be assumed equal to the speed of

sound of the contained fluid or more realistically approximated by the following expressio_

given in Reference 2-1.

_ /___
.=V17_ f "v _-2_ (5-1)

Eh

where

K

Of

= Bulk Modulus of fluid

= Mass density of fluid

If the Bulk Modulus and specific gravity of the fluid are assumed respectively as

1.38 x 105 psi and 1.142, then the velocity of the pressure transient front given by

Equation (5-1) is

v = 2,140 ft/sec

Note that the speed of sound for the fluid of the problem assumed is af =JK/p f

2,980 ft/sec and a comparison of this latter speed with that of 2,140 ft/sec computed above

indicates that the duct is relatively elastic.
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The speed design parameter, )t

= 2 _140 ft/sec is

, as determined from Equation (3-100):for

k - PRV2 _/_2(1-U 2_ =3.1
2hE g

I The length design parameter, _ 'i given by Equation (3-101), is

_2I __/_-,_, :,._x_o_
If damping effects are assumed negligible, i.e. g = 0 (see Equation 3-102), then

the nondimensional maximum deflection and bending moment as Obtained from Figure

V-4 is l

= 2.1, _ = 0.33
max

These m._im,,m values do not occur, in general, at the same time or locations. The

corresponding bending moment and deflection as presented in Table 4 are, for this

problem, approximately:

w = 0.0464, M = 0.3027
cor. xcor,

The stresses (r.L and cr in the hoop and axial directions respectively can
x

now be determined by the following well-l_o_ expressions:

N_ _M6x M6x

O'_ = T + h2 , Crx- h2 (5-2)

Or, in terms of the nondimensional deflection and bending moment parameters, Equations

5-2 are written as:

I _ /_ _,_ _ _.
- _w+ --:_--- 2 ' O'x=_ pR0"_

l
(5-3)
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Hence, for the stated problem we find:

(1) Stresses at maximum deflection (hoop stress) location

m

xcor.

= pR + 2) = 252 pcr_ h J3 (1- _

o

M
3pR xcor...

Crx = + --h / _ =_61.1p
•_3 (1- v

(2) Stresses at maximum bending moment location

0"_ h Wcor. + _ " =16.2

O"

M
3pR xmax

= + -- = +73.9 p
X h J3 (i- _

The magnitude of the transient pressure, p, can be approximated by use of

expressions given in Reference 2-1 or, when practical, determined experimentally.

we assume the change in pressure resulting from a valve closure situation to be

p = 110 psi, then the above stresses are respectively:

If

o-_: 27,600 psi
(i) o" = ± 6,710 psi

X

(2)
cr_ = 1,780 psi

Orx = 8,110 psi

Note that these stresses are caused by pressure transients and must be added to

operating pressure stresses. Thus, for an operating pressure, Po' of 150 psi, the

largest hoop stress predicted would be:

Po R
+ 27,600 = 42,600 psi
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VI. ADVANCED PROBLEMS

A. EFFECT OF AXIAL PRE-STRESS

The present analysis assumes that the liquid propellant duct subjected to pressure

transients is free from axial forces or any other pre-stress conditions. A recent investi-

gation (Ref. 3-3} considers the effect of axial pre-stress for the case of axi-symmetric

response of an infinite cylindrical shell subjected to a moving pressure wave. This

analysis clearly shows that such pre-stress conditions can have a pronounced quantitative

and qualitative effect upon shell response. In particular, it is shown that axial pre-tension

increases the critical speed, while axial pre-compression will decrease the critical speed.

The primary sources of pre-stress in a liquid propellant duct are

(a) Thermal Effects

(b) Assembly Stresses

(c) Axial and/or transverse acceleration (body forces)

It should be noted that pre-stress conditions are not necessarily axi-symmetric, and when

the pre-stress condition is of the non-axisymmetric type (pure bending, for example),

shell response will be non-axisymmetric even though the pressure transients are axi-

symmetric. Thus the extension of the present investigation to account for general pre-stress

conditions will require the solution of the general thin-shell equations not restricted to

axial symmetry.

B. EFFECT OF SHEAR DEFORMATION AND ROTATORY INERTIA

The present investigation neglects the effects of shear deformation and rotatory

inertia. A preliminary assessment of this effect is contained in Reference 3-1, where it

is shown that significant deviations from simple shell theory are possible depending upon

the speed of propagation of the pressure pulse, duct thickness, and other physical para-

meters of the problem. The results of Reference 3-1 may be extended to obtain some

refined design data of the type generated in the present investigation. We note that although
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these effects may change the presently submitted design data for some combination of

the problem parameters, the influence of shear deformation and rotatory inertia could

be of paramount importance when liquid propellant ducts are made of moderately thick

material or utilize sandwich construction.

C. LARGE ELASTIC DEFORMATIONS

The equations of motion which characterize duct behavior in the present investigation

assume that s-_ff!cient!y small deformations will oacur_ i.e., radial deformation of the

duct median surface is assumed to be small compared to duct thickness ( w < < h)

Although this results in somewhat conservative design data, the extent to which this

condition may be violated and the resulting penalty paid in terms of additional weight is

not known. The presently used shell theory is linear and methods for solution utilize the

principle of superposition. A shell theory which permits moderately large deflections

will result in non-linear, partial differential equations of motion. The solution of such

a system of equations is very difficult, and an initial research study will reveal to what

extent useful design data can be generated.

D. VARIATION OF BOUNDARY CONDITIONS

Only two sets of boundary conditions have been studied in this report: simple-simp]e

and clamped-clamped. The approach used in this investigation admits the satisfaction of

the following set of boundary conditions:

. Atx=0, andx=_ , one member of each of

the products ( Qw ) and (MxWl) vanishes.

Since we may specify four different homogeneous boundary conditions at each end of the

duct, there are ten physically distinct combinations of (admissible) homogeneous boundary

conditions which n_ay be imposed on the duct. Thus it may be concluded that there exist

eight additional cases which remain to be solved by the method of this investigation. Their

utility for design information rests upon detailed hardware considerations.

E. DUCTS DF VARYING THICKNESS

The present analysis may be modified to encompass dynamic response calculations

of ducts with variable thickness. In general, this will result in mode shapes characterized

Report No. 2286-950002 182



il

I

!

I

I

I
i

I
I

i

I
I

I
i

I

I
I

I

by non-elementary functions or defined in numerical form. Although the present

technique of separation of variables will remain unaltered in principle, the analysis

will require substantial alteration and make extensive use of approximate and numerical

methods.

F. INTERACTION OF FLUID AND DUCT

In the present analysis it is assumed that no interaction takes place between the

fluid and the duct, i.e., the fluid pressure forces are assumed to be known and are

applied to the duct. However, when the duct deforms it applies forces to the fluid,

and, conversely, the compressed fluid exerts forces upon the duct. It is obvious that

this interaction affects the over-all motion of the fluid-duct system. To study this

phenomenon, it will be necessary to modify the present shell model. The equations of

motion of a compressible fluid must be written in cylindrical coordinates, and the

motion of shell and fluid is coupled by appropriate interface conditions. An analytical

assessment of this phenomenon is possible, but its effects upon the presently generated

design data is not known. An initial research type study of this phenomenon is suggested

to develop the apparatus necessary to obtain improved design data.
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VII. CONCLUSIONS AND RECOMMENDATIONS

This study clearly shows that:

(a) Structural dynamic effects due to pressure transients are significant and

often give rise to high stresses which may cause failure in liquid propellant
ducts.

(b) These effects may be assessed both qualitatively and quantitatively by
methods of calculation which are detailed in the present report.

Methods which have been developed to date are adequate and may be extended. It

is felt that further work in this area will add to design efficiency (maximum strength to

weight ratio) and improve the reliability of propulsion systems. It is recommended that

further work be conducted in the areas discussed below:

(a) The present method of calculation depends on series summation of modal solutions.

The computer time required to obtain accurate solutions is often excessive. A

novel and efficient method to circumvent this problem has recently become

available. It is suggested that this technique be investigated and adapted to

the pressure transient problem.

(b) Preliminary calculations using a shell theory which includes the effect of

shear deformation and rotatory inertia indicate that in some circumstances

these effects may be important. It is, therefore, suggested that the regions of

importance be delineated _d a set of refined design charts be constructed

which incorporate these effects.

(c) The present analysis accounts only for two types of boundary conditions,

clamped-clamped and free-free. Since a variety of other cases appear in practice,

it is suggested the design charts be extended to cover a multitude of combinations

of boundary conditions on the duct.

(d) The present analysis neglects the interaction between fluid and duct. Since

this effect, in some circumstances may be important, it is suggested that an

analytical study be undertaken to assess its influence upon design stresses.

(e) The present analysis is concerned only with homogeneous ducting. It's known

that considerable weight saving can be affected by using sandwich construction

particularly when large and massive ducts are required. The present analysis

techniques may be readily extended to investigate the response of cylindrical

sandwich ducts to fluid pressure transients.
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(f) Almost all work to date in this area has been of an analytical nature. It is

felt that an experimental program with particular emphasis on the measurement

of the time history of fluid pressure transients and dynamic response of the

duct and their relationship is highly desirable. This should also include

correlation with the analytical results obtained in the present study.

(g) The effect of damping on the dynamic response of cylinders to traveling pressure
transients was found to be in general very significant. However, there are no _ii_

methods available that can be used to predict accurate damping coefficients.

Consequently, it is recommended that a study be performed specifically in the

area of damping.
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APPENDIX A

RESULTS OF LITERATURE SURVEY

The literature survey conducted revealed the existence of at least ten publications

of direct applicability to the present investigation. References 1 through 11 are restricted

to cylindircal shells subjected to axi-symmetr_ic_ moving load, moving in the direction of

the shell axis, with constant speed. References 1 through 7 treat the shell of unbounded

length, while references 8 through 11 are concerned with shells of finite length. A brief

summary of the key aspects of each reference follows:

THE SHELL OF UNBOUNDED LENGTH:

*

Reference h

This paper considers the deformation of an infinitely long thin-walled cylindrical

tube due to a shock wave inside the tube. It is established that the deformation becomes

considerable when the velocity of the shock wave is near a certain critical velocity of

the tube. Other sections of this work treat the gas dynamic aspects of the shock front

as it interacts with the structure. It is believed that the paper is in error for the case

of supercritical speeds. The analysis considers only simple shell bending theory, a sharp

pressure step, and solutions appears to be valid for subcritical speeds only.

Reference 2:

This short paper, which was originally published in the official journal of

the Russian Academy of Sciences, deals with the stability and deformation of an infinitely

long cylindrical shell. The shell is assumed to be under the influence of a ring line load,

which moves in the direction of a shell generator at constant speed. The influence of load

speed on deformation and the significance of critical speeds with respect to shell stability

are evaluated. The author uses simple shell bending theory and it appears that his solu-

tions are valid only for the subcritical speed range.
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I
I
I
I

I
I

I

|'

!
I

I
i

I
I

I
!

i
I

Reference 3:

An infinite cylindrical shell loaded by a step pressure wave is used to study the

importance of bending in a dynamic system with a moving, discontinuous load. The case

of an axially loaded thin steel shell submerge_ in water is discussed at length. A para-

meter study is run to determine the affect on shell behavior of changes in load speed,

external damping and shell thickness. Simple shell bending and pure membrane theory

are considered.

Reference 4:

This paper considers the response of a circular cylindrical shell subjected to

a moving ring load with a constant velocity. A Fourier integral approach is used. Solu-

tions are obtained within the frame work of Timoshenko-Love theory and Flh_,ge shell

theory. Both axial and transient inertia are considered, but it is shown that the lottgitudin_

coupling effects are small. The solution obtained appears to be v_lid for the subcritical

speed range only.

Reference 5:

This paper considers the axially symmetric dynamic response of an infinite

circular cythidrieal shell to a moving pressure load. The cylinder is subjected to a con-

stant axial prestress. It is shown that axial prestress has a significant effect upon dyn_ni_

response. Solutions obtained in this paper are valid for both subcritical and supercritical

speed regimes. The concept of group and phase velocity are utilized to determine the

steady state response for superc_itical load speeds.

Reference 6:

This paper considers the dynamic response (axially symmetric) of an infinite

cylindrical tube subjected to a moving step pressure. A Timoshenko type shell theory
I

+

is used, i.e., in addition to flexural response, the effects of shear deformation and rotator}."

inertia are considered. Shell response using this theory can differ radically when com-

pared to the more elementary theories, particularly in the high speed regime.

.°
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Reference 7:

This investigation treats the dynamical response (axially symmetric) of an

infinite cylindrical shell when subjected to a step pressure discontinuity moving in the

axial direction of the shell. The shell is submerged in fluid and acoustic radiation is

accounted for. The shell theory used is of the Timoshenko type, i.e., shear deformation

and rotatory inertiaare consideredin addition to bending and membrane deformation.

Because of the effective damping due to the acoustic medium, no critical speeds are shown
/

to exist. Comparison with lower order theories are satisfactory,

THE SHELL OF FINITE LENGTH

Reference 8:

This work represents an analysis of rotationally symmetric motions of a thin

cylinder caused by the passage of a pressure front of constant velocity along the axis of

the cylinder. The method, of virtual work is applied to a generator of the cylinder which

is then treated as a beam on the elastic foundation. Using free-free end conditions,

only simple shell bending theory is used.

Reference 9:

The differential equation for radial vibrations of a thin cylindrical shell is

derived by Hamilton's principle for the case of constant internal and transient external

pressures. Pressures are assumed symmetrical about the cylinder axis of symmetry

and the natural frequencies and mode shapes are obtained. The forced motion problem

is presented using integral transform methods. A specific solution is developed where

the external pressure is a step function moving over the cylinder in the axial direction.

Simple shell bending theory is used and only simple supports are considered.

Reference 10:

Using simple bending theory of cylindrical shells, the transient response of a

finite cylindrical shell of circular cross-section subjected to a moving pressure dis-

continuity is obtained for the axially symmetric case. The shell is simply supported at

both ends, and the method of Fourier series is employed. Dynamic amplification factors

are determined for some parameter ranges of the problem.
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Reference 11:

An exact, fornml solution is presented for the dynamic response of a cylindrical

shell of finite length under axi-symmetric, but otherwise arbitrarily distributed, time

dependent surface-tractions, for arbitrary initial conditions and (admissible) homogeneous

boundary conditions. The solution is obtai_.ed in terms of the eigenfunctions associated

with the free vibration of the shell, and appropriate orthogonality and normalization

conditions are formulated. The free vibration problem for a freely supported shell is

solved, and two examples of shell response to transient loading conditions are presented.

The theoretical development and its application are carried out within the framework of

a theory which accounts for the effect of shear deformation and rotatory inertia. Com-

parisons with elementary shell theories which neglect these effects are presented.
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APPENDIX B

TRANSLATION

STABILITY OF A CYLINDRICAL SHELL UNDER THE

INFLUENCE OF A MOVING PRESSURE LOAD*

by B. L. Prisekin

(Novosibir sk)

The stability and deformation of an infinitely long cylindrical shell is examined.

The shell is under the influence of a load which moves in the direction of a shell

generator at constant speed. The influence of load speed on deformation and the

significance of critical speeds with respect to shell stability are evaluated.

1. A line load of intensity P is uniformly distributed in the circumferential

direction and concentrated in the direction of the shell axis. The load moves with

speed v in the direction of the shell axis along an infinite cylindrical shell. Axisym-
o

metric response will result, and the equations of motion are(l):

-D a4 2_I_ ww 1 @ -P8 (-v t+x)+p h @2
o a t2

I c_x 4 R a x 2

Eh 4
0x

i a2w

R _ x 2

1.1

where _ (-v t + x) _ the Dirac delta function, D _ bending stiffness, h _ thickness,
o

R _ radius. Evidently the solution of equation (1.1) can be represented by:

*Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk

(Mekhanika i Mashinostroenie), No. 5, 1961, pp. 133-134.
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We assume a solution of the sys_m (1.1) in the form

: _ 2_
1 (W)_ i¢_ dW;

w- 2_r _2

-{3D

1F27r (co)_

-CO

We find

d{D

(1.2)

P Eh

AlW)=-_--; Blm)- R
A(_))

(1.3)

2 w 2 EhA =DW 4_ p hv +--
o R

Let us denote the root of the quation h

iT

4
=ae _ wherev =0

O O

= 0 by w where
O

4 Eh
a -

DR 2

Then the poles of the integrand function in (1.2) will be w = w
O"

roots w in the complex plane
0 a

2

where a =_11- Y2) pRy °
Eh

2 2
a a

u) q3

o

lie on the circular segment when 0 <- a - 1,

The

and on the real axis when a > 1 (see Figure 1).

a--cD

Re ---_
Figure 1 a

Evaluating integrals (1.2) with the help of residues, we obtain:

-i P 1 i _ Wo w o -i _ a 2
W _--

W _

[
2 _4 _[ --e +--2 e Wo2D (_) o - ) Wo a

O

-iP 1 -i_U) o U_° # U)o
2_ a4 ) # +_..__

2D (_o° _° 2 a
;_<o

(1.4)
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For the potential function we have, according to (1.2), (1.3)

a 2(I__ Eh
W

a_2 R

We note that the solution is symmetrical with respect to _ = 0. When a > 1 a

real solution does not exist. Fromthe equality a = 1 we obtain a formula for the

critical speed

Eh 1
= 2 R

o _/3(1-v ) P

In what follows we shall examine only the case where 0-< {2 _< 1, in other words v
o

In this case we may characterize the root w in the form (Figure 1).
o

I = ae
¢_0o

I

I

I

I

I

I

I

I

I

I

;tan _ -

Then the relation (1.4) assumes the form ( _ > 0)

P - _a sin _W =- 9

2a 3 D sm 2
cos(_ acos_ -¢ ) (1.5)

In the case of a static load on the shell in (1.5) we take v = 0. It follows from (1.5)
o

1
that when v -_ v_ ( _b -- 0) the magnitude of the bending moment grows as

o sin 2_ "

This is explained as follows: The homogeneous system (1.1) has solutions in the form

of travelIng sinusoid waves

ik (x-vt) ik (x-vt)w=Ae ; _ =Be

and for the relation between wave number k and wave speed v we have

2)#k2 ,or 7 = T + 7
o

(1.6)
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From (1.6) we see that the minimum speed of traveling waves is equal to v . This
o

result explains the increase in deflection of the shell as v -- v., and also explains why

the system (1.1) has no solution for Vo-* v. For steel shells the value of v is in the
1__ o

area 200-670 m/sec, for correspondingh from 400 to 40"

2. Let us evaluate the effect of speed of propagation of the load for the case of

shell instability. We assume the shell deforms symmetrically with respect to _ = O.

Let us compare the two conditions of the shell

(1) The load po is stationary

Ca

w po- .) 2oo Eho° - e _ cos 4 ' a _ 2 : -R-w (2.1)
2a3D

(2) The load moves with speed

P* _ a sin
w= 9-g

I

I
l

I

I
I

a

a

2a3D
cos(_ a cos¢ - _ ); (2.2)

2 {_ _ Eh w where P* = P (2.3)

2 R sin2_

From the above formulae we see that the shape of the deformed zone near the point of

application of the line load P and the character of the stress condition differ insignificantly

7#"

ifv o< 0 > v, (It follows from Figure 1that -__> _ _> 0 when0_ Vo_< v.).

Figure 2 shows the variation of _ as a function of v . Consequently, it follows that the
o

magnitude of the load will differ insignificantly for both cases and we may take approxi-

mately

o p,
P , •

when the value of the critical load P* is sufficiently high.

o .,/ 2
P, = P, 1-

Comparing with (2.3) we obtain

(2.4)
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The variation of -'-% as a function of the load speed v is given in Figure 2.
P, o

It shows that for a broad range of values of v there is little reduction of the criticalo

load compared to its static value. Only for the speed range corresponding to 0.7< a < 1

there occurs a sharp reduction in the magnitude of P.

I -9

I P__L*
p,o

I

I

! Literature:

0.4 20 ° _

0 , I J , , i
0 0.2 0.4 0.6 0.8 1.0

V
O

V

Figure 2.
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